A Model for Decision Making in the Insect Nervous System

  • Jennifer S. Altman
  • Jenny Kien

Abstract

Little is known about the neuronal mechanisms for selecting behavioural outputs appropriate to ongoing conditions. We present a model in which decisions are made by a concensus between the inputs at each stage in the system, not by a few neurones in a single centre. The stages are interconnected by loops of varying lengths, each with specific control functions. Neuromodulators and hormones contribute to the overall output by altering excitability but no single input is necessary and sufficient for producing any output.

Keywords

Fatigue Cobalt Serotonin Neurol Catecholamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman JS (1981) Functional organisation of insect ganglia. Adv Physiol Sci 23: 537–555.Google Scholar
  2. Altman JS, Kien J (1985) The anatomical basis for intersegmental and bilateral coordination in locusts. In: Bush B, Clarac F (eds) S.E.B. Seminar Series, 24, Cambridge Univ Press, Cambridge, pp 91–119.Google Scholar
  3. Altman GS, Kien J (1986) Functional organisation of the suboesophageal ganglion in insects and other arthropods. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. John Wiley and Sons, NY (in press).Google Scholar
  4. Bacon JP, Möhl B (1983) The tritocerebral commissure giant (TCG) wind-sensitive interneuron in the locust. I. Its activity in straight flight. J Comp Physiol 150: 439–452.CrossRefGoogle Scholar
  5. Bacon JP, Strausfeld NJ (1986) The dipteran ‘giant fibre’ pathway: neurons and signals. J Comp Physiol 158: 527–548.CrossRefGoogle Scholar
  6. Bacon JP, Tyrer M (1979) Wind interneurone input to flight motorneurones in the locust, Schistocerca gregaria. Naturwiss 66: 116.CrossRefGoogle Scholar
  7. Bässler U, Foth E, Breutel C (1985) The inherent walking directions differ for the prothoracic and mesothoracic legs of stick insects. J Exp Biol 116: 301–311.Google Scholar
  8. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organisation in monkey striate cortex. Nature 321: 579–585.PubMedCrossRefGoogle Scholar
  9. Boyan GS, Altman JS (1985) The suboesophageal ganglion: A “missing link” in the auditory pathway of the locust. J Comp Physiol 156: 413–428.CrossRefGoogle Scholar
  10. Burrows M, Rowell CHF (1973) Connections between descending visual interneurons and metathoracic motoneurons in the locust. J Comp Physiol 85: 221–234.CrossRefGoogle Scholar
  11. Cobb JLS (1987) Neurobiology of the Echinodermata. (This volume)Google Scholar
  12. Croll RP (1987) Identified neurons and cellular homologies. (This volume)Google Scholar
  13. Davies NT (1987) Neurosecretory neurons and their projections to the serotonin neurosecretory system of the cockroach Periplaneta americana (L.), identification of mandibular and maxillary motor neurons associated with this system. J Comp Neurol (in press).Google Scholar
  14. Davis WJ (1976) Organisational concepts in the central motor networks of invertebrates. Adv Behav Biol 18: 265–292.Google Scholar
  15. Davis WJ (1985) Central feedback loops and some implications for motor control. In: Barnes WJP, Gladden MM (eds) Feedback in motor control. Croon-Helm, London, pp 13–34.Google Scholar
  16. Dudai Y, Amari SI, Bienenstock E, Dehaene S, Fuster J, Goddard GV, Konishi M, Menzel R, Mishkin M, Müller CM, Rolls ET, Schwegler HH, von der Malsburg C (1987) On neural assemblies and memories. In: Changeux J-P, Konishi M (eds) Neural and molecular bases of learning. Dahlem Conference, Springer Verlag, Berlin (in press).Google Scholar
  17. Eaton RC, DiDomenico R (1987) Command and the neural causation of behaviour: a theoretical analysis of the necessity and sufficiency paradigm. Brain Behav Evol (in press).Google Scholar
  18. Erickson RP (1963) Sensory neural patterns and gustation. In: Zotterman Y (ed) Olfaction and taste. Pergamon Press, New York, pp 205–213.Google Scholar
  19. Evans PD, O’Shea M (1977) An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 270: 257–259.PubMedCrossRefGoogle Scholar
  20. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of lont-term memory: a molecular framework. Nature 322: 419–421.PubMedCrossRefGoogle Scholar
  21. Grinvald A, Licke E, Frostig RD, Gilbert C, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.PubMedCrossRefGoogle Scholar
  22. Harris-Warrick RM, Flamm RE (1986) Chemical modulation of a small central pattern generator circuit. Trends Neurosci 9: 432–437.CrossRefGoogle Scholar
  23. Harris-Warrick RM, Kravitz EA (1984) Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster. J Neurosci 4: 1976–1993.PubMedGoogle Scholar
  24. Heitler WJ, Burrows M (1977) The locust jump. I. The motor programme. J Exp Biol 66: 203–219.PubMedGoogle Scholar
  25. Hoyle G (1977) Identified neurons and behavior of arthropods. Plenum, New York.Google Scholar
  26. Hoyle G, Colquhoun W, Williams M (1980) Fine structure of an octopaminergic neuron and its terminals. J Neurobiol 11L 103–126.CrossRefGoogle Scholar
  27. Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlung beim Männchen von Gryllus campestris L. Z Tierpsychol 12: 12–48.CrossRefGoogle Scholar
  28. Huber F (1965) Brain controlled behaviour in orthopterans. In: Treherne JE, Beament JWR (eds) The physiology of the insect central nervous system. Academic Press, London, pp 233–246.Google Scholar
  29. Huber F (1980) Zoologische Grundlagenforschung aus der Sicht eines Insektenbiologen. Verh Dtsch Zool Ges, 73 Jahresversammlung, pp 12–37.Google Scholar
  30. Kien J (1979) Variability of locust motorneuron responses to sensory stimulation: A possible substrate for motor flexibiltiy. J Comp Physiol 134: 55–68.CrossRefGoogle Scholar
  31. Kien J (1983) The initiation and maintenance of walking in the locust. An alternative to the command concept. Proc R Soc Lond B 219: 137–174.CrossRefGoogle Scholar
  32. Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophageal ganglia and their role in the control of locust behaviour. J Insect Physiol 30: 59–72.CrossRefGoogle Scholar
  33. Kravitz EA, Glusman S, Harris-Warrick RM, Livingstone MS, Schwarz T, Goy MF (1980) Amines and a peptide as neurohormones in lobsters: Actions on neuro-muscular preparations and preliminary behavioural studies. J Exp Biol 89: 159–175.PubMedGoogle Scholar
  34. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 1–10.CrossRefGoogle Scholar
  35. Lent CM (1985) Serotonic modulation of the feeding behaviour of the medicianl leech. Brain Res Bull 14: 643–655.PubMedCrossRefGoogle Scholar
  36. Menzel R, Bicker G (1987) Plasticity in neuronal circuits and assemblies of invertebrates. In: Changeux J-P, Konishi M (eds) Neural and molecular bases of learning. Dahlem Conference. Springer Verlag, Berlin (in press).Google Scholar
  37. Morton DB, Truman JW (1986) Substrate protein availability regulates eclosion hormone sensitivity in an insect CNS. Nature 323: 264–267.PubMedCrossRefGoogle Scholar
  38. Nässei DR (1987) Aspects of the functional and chemical anatomy of the insect brain. (This volume)Google Scholar
  39. O’Shea M, Adams M (1981) Pentapeptide (Proctolin: Arg - Tyr - Len - Pro - Thr) associated with an identified neuron. Science 213: 567–569.PubMedCrossRefGoogle Scholar
  40. Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust jump by multimodal inhibitory interneurons. J Neurophysiol 43: 257–278.PubMedGoogle Scholar
  41. Ramirez J-M (1983) Untersuchung der sensorischen Eingänge von multimodalen Neuronen im Unterschlundganglion der Heuschrecke (Schistocerca gregaria). Diplom-Thesis, Universität Regensburg, Regensburg.Google Scholar
  42. Ramirez J-M (1986) Interneuronal control of flight. Doctoral Thesis. University of Regensburg, Regensburg.Google Scholar
  43. Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315: 142–144.CrossRefGoogle Scholar
  44. Rämy C, Girardie J (1980) Anatomical organization of two vasopressin-neurophysin-like neurosecretory cell throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40: 27–35.CrossRefGoogle Scholar
  45. Robertson RM (1987) Insect neurons: synaptic interactions, circuits and the control of behavior. (This volume)Google Scholar
  46. Rowell CHF, Pearson KG (1983) Ocellar input to the flight motor system of the locust: structure and function. J Exp Biol 103: 265–288.Google Scholar
  47. Rummelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536.CrossRefGoogle Scholar
  48. Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299: 413–417.PubMedCrossRefGoogle Scholar
  49. Siegler MVS, Burrows M (1979) The morphology of local non-spiking interneurons in the metathoracic ganglion of the locust. J Comp Neurol 183: 121–147.PubMedCrossRefGoogle Scholar
  50. Sombati S, Hoyle G (1984) Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator ocotpamine. J Neurobiol 15: 481–506.PubMedCrossRefGoogle Scholar
  51. Tublitz NJ, Copenhauer PF, Taghert PM, Truman JW (1986) Peptidergic regulation of behavior: an identified neuron approach. Trends Neurosci 9: 359–363.CrossRefGoogle Scholar
  52. Tyrer NM, Turner J, Altman JS (1984) Identifable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227: 313–330.PubMedCrossRefGoogle Scholar
  53. Wilson DM (1962) Bifunctional muscles in the thorax of grasshoppers. J Exp Biol 39: 669–677.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jennifer S. Altman
    • 1
  • Jenny Kien
    • 1
  1. 1.Institut für ZoologieUniversität RegensburgFed. Rep. Germany

Personalised recommendations