Advertisement

Ontogenesis of the Nervous System in Cephalopods

  • H.-J. Marthy

Abstract

Our knowledge on the ontogenisis of the nervous system in cephalopods is rather fragmentary. Many major questions such as the precise origin of the head ganglia from the (neur–)ectoderm in early embryogenesis, the chronology of ganglia “assemblage”, the developmental events in nerve cell differentiation and the “overlap” of simultaneous growth and functioning of the brain are essentially still open. However, thanks to histological studies made on developing embryos of a decapodan (Loligo vulgaris) and and octopodan species (Octopus vulgaris) the general course of the nervous system formation in cephalopods can be recognised. Occasional observations on ganglion formation are found dispersed in the literature. The differentiation of the giant fibre system has been studied also and the first experimental approach for studying neurogenesis has been made. So far, hardly any physiological work has been done on cephalopod embryos. Some insight into the postembryonic development of the cephalopod brain is also available. (In contrast to the few studies available on embryos, an important literature exists dealing with descriptive and experimental observations made on all parts of the nervous system of adults).

In a squid hatchling all the central ganglia (cerebral, pedal visceral, peduncular, olfactory, basal and optic ganglia) are present and form the supra- and suboesophageal ganglia mass (=head). Except for the optic ganglia, they are divided into varous subunits, the lobes. The giant fibre system is distinct by large nuclei and its differentiation state clearly precedes that of the other parts of the nervous system. Also, most of the peripheral ganglia (brachial, buccal, subradular, gastric and stellate) are present.

The morphological situation found in hatchlings (resembling essentially that of the adults) is reached during embryogenesis from about stage VII onwards. The period until stage XII is the phase of actual ganglion formation. From stage XIII until hatching stage XX, the final topology of the ganglia and their relations are established and the lobular and cellular differentiation progresses. Based on the different results given by various authors, on personal communications from colleagues and on personal observations, the crucial developmental steps in the formation of the nervous system in decapodan and octopodan cephalopods are reviewed.

Keywords

Cerebral Ganglion Stellate Ganglion Giant Axon Optic Vesicle Pedal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boletzky SV (1968) Untersuchungen über die Organogenese des Kreislaufsystems von Octopus vulgaris Lam. Rev Suisse zool 75: 765–812.Google Scholar
  2. Boycott BB, Young JZ (1955) A memory system in Octopus vulgaris Lam. Proc R Soc Lond B 143: 449–480.PubMedCrossRefGoogle Scholar
  3. Boyle PR (ed) (1983) Cephalopod life cycles. Vol I. Academic Press, London.Google Scholar
  4. Boyle PR (1986) Neural control of cephalopod behavior. In: Willows AOD (ed) The Mollusca. Vol 9, Part 2, Neurobiology and behavior. Academic Press, New York, pp 1–99.Google Scholar
  5. Dubas F, Hanlon RT, Ferguson GP, Pinsker HM (1986) Localization and stimulation of chromatophore motorneurones in the brain of the squid, Lolliguncula brevis. J Exp Biol 121: 1–25.PubMedGoogle Scholar
  6. Faussek V (1901) Untersuchungen über die Entwicklung der Cephalopoden. Mitt Zool Sta Neapel 14: 83–237.Google Scholar
  7. Frösch D (1971) Quantitative Untersuchungen am Zentralnervensystem der Schlüpfstadien von zehn mediterranen Cephalopodenarten. Rev Suisse Zool. 78: 1069–1122.Google Scholar
  8. Korscheit E (1892) Beiträge zur Entwicklungsgeschichte der Cephalopoden. I. Die Entstehung des Darmkanals und des Nervensystems in Beziehung zur Keimblätterfrage. Verh d Zool Bot Ges, Leipzig, Festschr Leukart: 345–373.Google Scholar
  9. Marquis F (1981) Untersuchungen über die Entwicklung des Nervensystems im Embryo von Octopus vulgaris Lam. Inauguraldissertation, Universität Basel (CH).Google Scholar
  10. Marthy H-J (1973) An experimental study of eye development in the cephalopod Loligo vulgaris: determination and regulation during formation of the primary optic vesicle. J Embryol Exp Morphol 29: 347–361.PubMedGoogle Scholar
  11. Marthy H-J, Aroles L (1983) Culture in vitro du complexe oculoganglionnaire de l’embryon du cephalopode Loligo vulgaris. Biol Cell 49: 16a.Google Scholar
  12. Marthy H-J, Aroles L (1987) In vitro culture of embryonic organ and tissue fragments of the squid Loligo vulgaris with special reference to the establishment of a long term culture of ganglion-derived nerve cells. Zool Jb Physiol 91: 189–202.Google Scholar
  13. Marthy H-J, Hauser R, Scholl A (1976) Natural tranquilliser in cephalopod eggs. Nature 261: 496–497.PubMedCrossRefGoogle Scholar
  14. Martin R (1965) On the structure and embryonic development of the giant fibre system of the squid Loligo vulgaris. Z Zellforsch 67: 77–85.PubMedCrossRefGoogle Scholar
  15. Martin R (1969) The structural organization of the intracerebral giant fibre system of cephalopods. I. The chiasma of the first order giant axons. Z Zellforsch 97: 50–68.PubMedCrossRefGoogle Scholar
  16. Martin R (1977) The giant nerve fibre system of cephalopods, recent structural findings. Symp Zool Soc Lond 38: 261–275.Google Scholar
  17. Martin R, Miledi R (1986) The form and dimensions of the giant synapse of squids. Phil Trans R Soc Lond B 312: 355–377.CrossRefGoogle Scholar
  18. Martin R, Rungger D (1966) Zur struktur und Entwicklung des Riesenfasersystems erster Ordnung von Sepia officinalis L. Z Zellforsch 74: 454–463.PubMedCrossRefGoogle Scholar
  19. Mauro A (1977) Extra-ocular photoreceptors in cephalopods. Symp Zool Soc Lond 38: 287–308.Google Scholar
  20. Meister G (1972) Organogenese von Loligo vulgaris Lam. Zool Jb Anat 89: 247–300.Google Scholar
  21. Messenger JB (1979) The neuron system of Loligo. IV. The peduncle and olfactory lobes. Phil Trans R Soc Lond B 285: 275–309.CrossRefGoogle Scholar
  22. Messenger JB (1982) Multimodal convergence and the regulation of motor programs in cephalopods. Fortschr Zool 28: 77–98.Google Scholar
  23. Naef A (1928) Die Cephalopoden. Fauna Flora del Golfo di Napoli. V-IX, 35 (2): 1–357. Berlin.Google Scholar
  24. Packard A, Albergoni V (1970) Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck). J Exp Biol 52: 539–552.PubMedGoogle Scholar
  25. Sacarrao GF (1956) Contribution à l’étude du développement embryonnaire du ganglion stellaire et de la glande endocrine des Céphalopodes. Arqu Mus Bocage, Lisboa 27: 137–152.Google Scholar
  26. Weischer M-L, Marthy H-J (1983) Chemical and physiological properties of the natural tranquilliser in the cephalopod eggs. Mar Behav Physiol 9: 131–138.CrossRefGoogle Scholar
  27. Wells MJ (1962) Brain and behaviour in cephalopods. Heinemann Studies in Biology, London, Melbourne, Toronto.Google Scholar
  28. Wells M J (1978) Octopus. Physiology and behaviour of an advanced invertebrate. Chapman and Hall, London.Google Scholar
  29. Wirz-Mangold K (1959) Etude biométrique du système nerveux des Céphalopodes. Bull Biol 93: 78–117.Google Scholar
  30. Yamamoto M (1985) Ontogeny of the visual system in the cuttlefish, Sepiella japonica. I. Morphological differentiation of the visual cell. J Comp Neurol 232: 347–361.PubMedCrossRefGoogle Scholar
  31. Yamamoto M, Takasu N, Uragami I (1985) Ontogeny of the visual system in the cuttlefish, Sepiella japonica. II. Intramembrane particles, histofluorescence, and electrical responses in the developing retina. J Comp Neurol 232: 362–371.PubMedCrossRefGoogle Scholar
  32. Young JZ (1939) Fused neurones and synaptic contacts in the giant nerve fibres of cephalopods. Phil Trans R Soc Lond B 229: 465–503.CrossRefGoogle Scholar
  33. Young JZ (1963) The number and sizes of nerve cells in octopus. Proc Zool Soc Lond 140: 229–254.Google Scholar
  34. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford.Google Scholar
  35. Young JZ (1974) The central nervous system of Loligo. I. The optic lobe. Phil Trans R Soc Lond B: 267: 263–302.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • H.-J. Marthy
    • 1
  1. 1.Laboratoire Arago — U.A. 117 C.N.R.SUniversité Pierre et Marie Curie (Paris VI)Banyuls-sur-merFrance

Personalised recommendations