Skip to main content

The Nervous System of the Crustacea, with Special Reference to the Organisation of The Sensory System

  • Chapter
Nervous Systems in Invertebrates

Abstract

An attempt is made to review the arrangement of the sensory system (excluding the eyes) in the Crustacea, with examples of types of sense organs from mechanical and chemical sensitive groups. The morphogenesis of sensory organs increases the numbers of individual units, at each moult, and ensures a distinctive pattern of sensors associated with each sensory bundle of nerves.

The mechanoreceptors of the basal insertions of limbs (body-coxal joint) form a series. Fundamentally it is likely that each segment contains a chordotonal, and a muscle receptor, organ at the base, but this primary arrangement has been modified according to the specialisation of the limb. The abdominal limbs have only large diameter, non-spiking sensors, which are mimicked in the uropods, though spiking may occur in the latter. In the thorax both types of receptor organs are found in all pereiopods and in the 2nd and 3rd maxillipeds. No chordotonal organ is located in the scaphognathite, nor the mandible, although the former has large diameter sensory neurones with central cell bodies while the latter has a muscle receptor organ (MRO) with bipolar cells. The 1st antenna possesses a chordotonal organ associated with a muscle. The number of individual receptor cells is usually small in non-spiking MROs and rather more in bipolar chordotonal organs.

Amongst chemoreceptors there is a range of organs that may take the form of sensors lying flush with the surface or alternatively as setae projecting into the environment. The number of units represented in such receptors varies from 2–3 in oesophageal sensors, through 12–14 in some amphipod setae, to 20–22 in funnel canals, up to 300 or so in decapod aesthetascs. Some of these receptors carry terminal apertures, whilst others do not. In some the ciliated endings of the dendrites branch but in others they do not.

In summary the sensory system of Crustacea is orderly, with varied and distributed types of end organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken DE (1973), Proecdysis, setal development and molt prediction in the American lobster (Homarus americanus). J Fish Bd Canada 30: 1337–1344.

    Google Scholar 

  • Aiken DE (1980) Molting and growth. In: Cobb JS, Phillips DF (eds) Biology and management of lobsters. Vol. I. Academic Press, New York and London, PP 91–163.

    Google Scholar 

  • Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of Crustacea. Biol Revs 42: 288–326.

    Google Scholar 

  • Alexandrowicz JS, Whitear M (1957) Receptor elements in the coxal region of Decapoda Crustacea. J Mar Biol Assoc UK 57: 379–396.

    Google Scholar 

  • Allen EG (1894a) Studies on the nervous system of Crustacea. I. Some nerve elements of the embryonic lobster. Quart J Microsc Sci 36: 461–482.

    Google Scholar 

  • Allen E3 (1894b) Studies on the nervous system of Crustacea. II. The stomatogastric system of Astacus and Homarus. III. On the beading of nerve fibres and on end swellings. Quart J Microsc Sci 36: 483–498.

    Google Scholar 

  • Altner H, Hatt H, Altner I (1986) Structural and functional properties of the mechanoreceptors and chemoreceptors in the anterior oesophageal sensilla of the crayfish, Astacus astacus. Cell Tissue Res 244: 537–547.

    CAS  Google Scholar 

  • Altner I, Hatt H, Altner H (1983) Structural properties of bimodal chemo and mechanosensitive setae on the pereiopod chelae of the crayfish, Austropotamobius torrentium. Cell Tissue Res. 228: 357–374.

    PubMed  CAS  Google Scholar 

  • Andersson A (1975) The ultrastructure of the presumed chemoreceptor aesthetasc ‘Y’ of a cypridid ostracode. Zool Scripta 4: 151–158.

    Google Scholar 

  • Atema J (1985) Chemoreception in the sea; Adaptations of chemoreceptors and behaviour to aquatic stimulus conditions. In: Laverack MS (ed) Physiological adaptations of marine animals. Symp Soc Exp Biol 39: 387–423.

    Google Scholar 

  • Atema J (1987) Distribution of chemical stimuli. In: Atema J, Fay RR, Popper AN (eds) Sensory physiology of aquatic animals. Springer Verlag, Berlin and New York (in press).

    Google Scholar 

  • Ball EE, Cowan AN (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Phil Trans Soc B 277: 429–456.

    CAS  Google Scholar 

  • Ballinger ML, Bittner GD (1980) Ultrastructural studies of several medial and other CNS axons in crayfish. Cell Tissue Res 208: 123–133.

    PubMed  CAS  Google Scholar 

  • Bender M, Gnatzy W, Tautz J (1984) The antennal feathered hairs in the crayfish: a non-innervated stimulus transmitting system. J Comp Physiol A 154: 45–47.

    Google Scholar 

  • Bittner GD (1981) Trophic interactions of CNS giant axons in crayfish. Comp Biochem Physiol 68 A: 298–306.

    Google Scholar 

  • Bittner GD, Ballinger ML, Larimer JL (1974) Crayfish CNS: minimal degenerative changes after lesioning. J Exp Zool 189: 13–36.

    PubMed  CAS  Google Scholar 

  • Braunig P, Cahill MA, Hustert R (1986) The coxo-trochanteral muscle receptor organ of locusts. Dendritic tubular bodies in a non-ciliated insect mechanoreceptive neurone. Cell Tissue Res 243: 517–524.

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman and Co. San Francisco and London, 1719 pp.

    Google Scholar 

  • Bush BMH (1976) Non-impulsive thoracic-coxal receptors in crustaceans. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 115–151.

    Google Scholar 

  • Bush BMH, Laverack MS (1982) Mechanoreception. In: Atwood H, Sandeman DC (eds) Biology of Crustacea. Volume 3. Academic Press, New York and London, pp 399–468.

    Google Scholar 

  • Clark JV, Dorsett DA (1978) Anatomy and physiology of proprioceptors in the cirri of Balanus hameri. J Comp Physiol 123: 229–237.

    Google Scholar 

  • Cobb JLS, Heitler WJ (1985). Ultrastructure of the phasic stretch receptor in the crayfish abdominal nerve cord. J Neurocytol 14: 413–426.

    PubMed  CAS  Google Scholar 

  • Dahl E (1973) Antennal sensory hairs in Talitrid Amphipods, Acta Zool 54: 161–171.

    Google Scholar 

  • Dahl E, Emanuelsson H, von Mecklenburg C (1970) Pheromone reception in the males of the amphipod Gammarus duebeni Lilljeborg. Oikos 21: 42–47.

    Google Scholar 

  • Davis WJ (1973) Development of locomotor patterns in the absence of peripheral sense organs and muscles. Proc Nat Acad Sci 70: 964–958.

    Google Scholar 

  • Davis WJ, Davis KB (1973) Ontogeny of a simple locomotor system. Role of the periphery in the development of a central nervous circuitry. Amer Zool 13: 409–425.

    Google Scholar 

  • Denton EJ, Gray J (1985) Lateral-line -like antennae of certain of the Penaeidae (Crustacea, Decapoda, Natantia). Proc Soc Lond B 226: 249–261.

    Google Scholar 

  • Espeel M (1985) Fine structure of the statocyst sensilla of the mysid shrimp Neomysis integer. J Morphol 186: 149–165.

    Google Scholar 

  • Espeel M (1986) Morphogenesis during moulting of the setae in the statocyst sensilla of the mysid shrimp Neomysis integer (Leach 1814) (Crustacea, Mysidacea). J Morphol 187: 61–68.

    Google Scholar 

  • Felgenhauer BE, Abele LG (1983). Ultrastructure and functional morphology of feeding and associated appendages in the tropical freshwater shrimp Atya innocous (Herbst) with notes on its ecology. J Crust Biol 3: 336–363.

    Google Scholar 

  • Ghiradella HT, Case JF, Cronshaw J (1968a). Structure of aesthetascs in selected marine and terrestrial Decapods. Chemoreceptor morphology and environment. Amer Zool 8: 603–621.

    CAS  Google Scholar 

  • Ghiradella HT, Cronshaw J, Case JF (1968b) Fine structure of the aesthetasc hairs of Pagurus hirsutiusculus Dana. Protoplasms 66: 1–20.

    Google Scholar 

  • Gnatzy W, Schmidt M, Rombke J (1984) Are the funnel-canal organs the ‘campaniform sensilla’ of the shore crab Carcinus maenas (Crustacea, Decapoda) ? Zoomorphol 104: 11–20.

    Google Scholar 

  • Govind CK, Pearce J (1985) Lateralization in number and size of sensory axons to the dimorphic chelipeds of Crustaceans. J Neurobiol 16: 111–125.

    PubMed  CAS  Google Scholar 

  • Grobstein P (1973) Extension-sensitivity in the crayfish abdomen. 1. Neurons monitoring nerve cord length. J Comp Physiol 86: 331–348.

    Google Scholar 

  • Guse G-W (1978) Antennal sensilla of Neomysis integer (Leach). Protoplasms 95: 145–161.

    Google Scholar 

  • Guse G-W (1979) Feinstruktur der Aesthetasken von Neomysis integer (Leach) (Crustacea, Mysidacea). Zool Jb Jena 203: 170–176.

    Google Scholar 

  • Guse G-W (1983). Ultrastructure, development and moulting of the aesthetascs of Neomysis integer and Idotea baltica (Crustacea, Malacostraca). Zoomorphol 103: 121–133.

    Google Scholar 

  • Hamilton KA, Lingerg KA, Case JF (1985) Structure of dactyl sensilla in the kelp crab, Pugettia producta. J Morphol 185: 349–366.

    Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water, J Acoust Soc Amer 34: 1831–1841.

    Google Scholar 

  • Hartman HB, Austin WD (1972) Proprioceptor organs in the antennae of Decapoda Crustacea. 1. Physiology of a chordotonal organ spanning two joints in the spiny lobster Panulirus interruptus (Randall). J Comp Physiol 81: 187–202.

    Google Scholar 

  • Heimann P (1979) Fine structure of sensory tubes on the antennule of Conchoecia spinirostris (Ostracoda, Crustacea). Cell Tissue Res 202: 461–477.

    PubMed  CAS  Google Scholar 

  • Heimann P (1984) Fine structure and moulting of aesthetasc sense organs on the antennules of the isopod Asellus aquaticus (Crustacea). Cell Tissue Res 235: 117–128.

    PubMed  CAS  Google Scholar 

  • Heitler WJ (1982) Non-spiking stretch-receptors in the crayfish swimmeret system. J Exp Biol 96: 355–366.

    Google Scholar 

  • Herbst C (1900) Uber die Regeneration von antennenahnlichen organen an Stelle von Augen. III, IV. Arch Entwick Mech Org 9: 215–292.

    Google Scholar 

  • Horch K (1971) An organ for hearing and vibration sense in the ghost crab Ocypode. Z vergl Physiol 73: 1–21.

    Google Scholar 

  • Hoy RR, Bittner GD, Kennedy DM (1967) Regeneration in crustacean motoneurones; evidence for axonal fusion. Science 156: 251–252.

    PubMed  CAS  Google Scholar 

  • Hughes GM, Wiersma CAG (1960) Neuronal pathways and synaptic connexions in the abdominal cord of the crayfish. J Exp Biol 37: 291–307.

    Google Scholar 

  • Jellies J, Larimer JL (1986) Activity of crayfish abdominal-positioning interneurons during spontaneous and sensory-evoked movements. J Exp Biol 120: 173–188.

    PubMed  CAS  Google Scholar 

  • Juberthie-Jupeau L, Crouau Y (1977) Ultrastructure des aesthetascs d’un Mysidace souterrain anophthalme. CR Acad Sci Paris 284: 2257–2259.

    Google Scholar 

  • Kirk MD, Govind CK (1983) Innervation and motor patterns of the abdominal superficial flexor muscles in larval lobsters. J Neurobiol 14: 395–405.

    Google Scholar 

  • Laverack MS (1962) Responses of cuticular sense organs of the lobster Homarus. I. Hair peg organs as water current receptors. Comp Biochem Physiol 5: 319–325.

    Google Scholar 

  • Laverack MS (1964) The antennular sense organs of Panulirus argus. Comp Biochem Physiol 13: 301–321.

    PubMed  CAS  Google Scholar 

  • Laverack MS (1974). Comparative physiology; neurophysiology of marine invertebrates. In: Mariscal RN (ed) Experimental marine biology. Academic Press, New York and London, pp 99–163.

    Google Scholar 

  • Laverack MS (1976a) External proprioceptors. In: Mill PJ (ed) Structure and function of proprioceptors in invertebrates. Chapman and Hall, London, pp 1–63.

    Google Scholar 

  • Laverack MS (1976b) Properties of chemoreceptors in marine Crustacea. Olfact Taste 4: 45–50.

    Google Scholar 

  • Laverack MS (1978) The organisation and distribution of CAP organs in the lobster Homarus gammarus (L.). Mar Behav Physiol 5: 201–208.

    Google Scholar 

  • Laverack MS (1987) The diversity of chemoreceptors. In: Popper AN, Fay RR, Atema J (eds) Sensory biology of aquatic animals. Springer Verlag Berlin, (in press).

    Google Scholar 

  • Laverack MS, Ardill DJ (1965) The innervation of the aesthetasc hairs of Panulirus argus. Quart J Microsc Sci 106: 45–60.

    Google Scholar 

  • Laverack MS, Barrientos Y (1985) Sensory and other superficial structures in living marine Crustacea. Trans R Soc Edin Earth Sci 76: 123–136.

    Google Scholar 

  • Laverack MS, Dando MR (1968) The anatomy and physiology of mouthpart receptors in the lobster Homarus vulgaris. Z vergl Physiol 61: 176–195.

    Google Scholar 

  • Macmillan DL, Dando MR (1972) Tension receptors on the apodemes of muscles in the walking legs of the crab, Cancer magister. Mar Behav Physiol 1: 185–208.

    Google Scholar 

  • Macmillan DL, Neil DM, Laverack MS (1976) A quantitative analysis of exopodite beating in the larvae of the lobster Homarus gammarus (L.). Phil Trans R Soc B 274: 69–85.

    PubMed  CAS  Google Scholar 

  • Maitland DP, Laverack MS, Heitler WJ (1982) A spiking stretch receptor with central cell bodies in the uropod coxopodite of the squat lobster, Galathea strigosa. J Exp Biol 101: 221–232.

    Google Scholar 

  • Maynard DM, Dingle H (1963) An effect of eyestalk ablation on antennular function in the spiny lobster, Panulirus argus. Z vergl Physiol 46: 515–540.

    Google Scholar 

  • McLaughlin PA (1982) Comparative morphology of crustacean appendages. In: Abele LG (ed) Biology of Crustacea. Vol 2. Academic Press, New York and London, pp 197–256.

    Google Scholar 

  • McVean A (1982) Autotomy. In: Sandeman DC, Atwood H (eds) Biology of Crustacea. Vol 4. Academic Press, New York and London, pp 107–132.

    Google Scholar 

  • Mellon D (1963) Electrical responses from dually innervated tactile receptors in the thorax of the crayfish. J Exp Biol 40: 137–148.

    Google Scholar 

  • Mill PJ, Lowe DG (1973) The fine structure of the PD proprioceptor of Cancer pagurus. 1. The receptor strand and the movement sensitive cells. Proc Soc Lond B 184: 179–197.

    CAS  Google Scholar 

  • Neil DM, Macmillan DL, Robertson RM, Laverack MS (1976) The structure and function of thoracic exopodites in the larvae of the lobster Homarus gammarus. Phil Trans R Soc B 274: 53–68.

    PubMed  CAS  Google Scholar 

  • Norris BJ, Hartman HB (1985) Cuticular hair organs evoking reflexive closing and openong of the crayfish claw. Comp Biochem Physiol 82 A 525–529.

    Google Scholar 

  • Pasztor VM (1969) The neurophysiology of respiration in decapod Crustacea. II. The sensory system. Can J Zool 47s 435–441.

    Google Scholar 

  • Pasztor VM, Bush BMH (1983) Graded potentials and spiking in single units of the oval organ, a mechanoreceptor in the lobster ventilatory organ. 3 Exp Biol 107: 431–449.

    Google Scholar 

  • Paul DH (1972) Decremental conduction over ‘giant’ afferent processes in the decapod Emerita. Science 176: 680–682.

    PubMed  CAS  Google Scholar 

  • Pringle JWS (1961) Proprioception in Arthropods. In: Ramsay JA, Wigglesworth VB (eds) The Cell and the Organism: Essays presented to Sir James Gray. University Press, Cambridge, pp 256–282.

    Google Scholar 

  • Rieder N (1978) Die Ultrastruktur der Rezeptoren auf der ersten Antennen von Daphnia magna. Verh Dtsch Zool Ges 1978: 229 G. Fischer Stuttgart.

    Google Scholar 

  • Risler H (1977) Die Sinnessorgane der Antennula von Porcellio scaber (Crustacea, Isopoda). Zool Jb Anat 98: 29–52.

    Google Scholar 

  • Risler H (1978) Die Sinnesorgane der Antennula von Ligidium hypnorum (Cuvier) (Isopoda), Crustacea). Zool Jb Anat 100: 514–541.

    Google Scholar 

  • Robertson RM, Laverack MS (1979a). The structure and function of the labrum in the lobster, Homarus gammarus (L.). Proc R Soc Lond B 206: 209–233.

    PubMed  CAS  Google Scholar 

  • Robertson RM, Laverack MS (1979b). Oesophageal sensors and their modulatory influence on the oesophageal peristalsis in the lobster Homarus gammarus. Proc R Soc Lond B 206: 235–263.

    PubMed  CAS  Google Scholar 

  • Sandeman DC (1985) Crayfish antennae as tactile organs: Their mobility and the responses of their proprioceptors. J Comp Physiol A 57: 363–373.

    Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the campaniform sensilla’ of the shore crab, Carcinus maenas? II. Ultrastructure. Cell Tissue Res 237: 81–93.

    PubMed  CAS  Google Scholar 

  • Schöne H, Schöne H (1980) Morphology and function of the antennular joint and its strand organ, instrumental to gravity reactions in the spiny lobster Panulirus argus. Zoomorphol 96: 191–203.

    Google Scholar 

  • Schöne H, Steinbrecht AR (1968) Fine structure of statocyst receptor of Astacus fluviatilis. Nature 220: 184–186.

    PubMed  Google Scholar 

  • Shaw S, Stowe S (1982) Photoreception. In: Atwood H, Sandeman DC (eds) Biology of Crustacea Vol 3. Academic Press, New York and London.

    Google Scholar 

  • Snow PJ (1973) Ultrastructure of the aesthetasc hairs of the littoral decapod Paragrapsus gaimardii. Z zellforsch 138: 489–502.

    PubMed  CAS  Google Scholar 

  • Spencer M (1986) The innervation and chemical sensitivity of single aesthetasc hairs. J Comp Physiol 158: 59–68.

    CAS  Google Scholar 

  • Strickler JR (1985) Feeding currents in calanoid copepods; two new hypotheses. In: Laverack MS (ed) Physiological adaptations of marine animals. Company of Biologists, Cambridge. Symp Soc Exp Biol 39: 459–485.

    Google Scholar 

  • Tautz J, Masters WM, Aicher B, Markl H (1981) A new type of water vibration receptor on the crayfish antenna. I. Sensory physiology. J Comp Physiol 144: 53–541.

    Google Scholar 

  • Vedel JP (1985) Cuticular mechanoreception in the antennal flagellum of the rock lobster Palinurus vulgaris. Comp Biochem Physiol 80 A: 151–158.

    Google Scholar 

  • Vedel JP (1986) Morphology and physiology of a hair plate sensory organ on the antenna of the rock lobster Palinurus vulgaris. J Neurobiol 17: 65–76.

    PubMed  CAS  Google Scholar 

  • Vedel JP, Monnier S (1983). A new muscle receptor organ in the antenna of the rock lobster, Palinurus vulgaris; mechanical and proprioceptive organization of the two proximal joints JO and J1. Proc R Soc Lond B 218: 95–110.

    Google Scholar 

  • Wales W, Laverack MS (1972a) The mandibular muscle receptor organ of Homarus gammarus. (L.). (Crustacea, Decapoda). Z Morph Tiere 73: 135–162.

    Google Scholar 

  • Wales W, Laverack MS (1972b). Sensory activity of the mandibular muscle receptor organ of Homarus gammarus (L.). 1. Response to receptor muscle stretch. Mar Behav Physiol 1: 239–255.

    Google Scholar 

  • Walker G (1974) The fine structure of the frontal filament complex of barnacle larvae (Crustacea: Cirripedia). Cell Tissue Res 152: 449–465.

    PubMed  CAS  Google Scholar 

  • Walker G, Lee VE (1976) Surface structures and sense organs of the cypris larva of Balanus balanoides as seen by scanning and transmission electron microscopy. J Zool 178: 161–172.

    Google Scholar 

  • Whitear M (1962) The fine structure of crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab, Carcinus maenas. Phil Trans R Soc 245: 292–324.

    Google Scholar 

  • Whitear M (1965) The fine structure of crustacean proprioceptors. II The thoracic-coxal organs in Carcinus, Pagurus and Astacus. Phil Trans R Soc B 248: 437–456.

    Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near field water displacements in crayfish. J Neurophysiol 39: 816–833.

    PubMed  CAS  Google Scholar 

  • Wiese K (1987) Representations of hydrodynamic movements in the nervous system of the crayfish, Procambarus. In: Popper AN, Fay RR, Atema J (eds) Sensory biology of aquatic animals. Springer Verlag, Berlin (in press).

    Google Scholar 

  • Williamson DI (1982) Larval morphology and diversity. In: Abele LG (ed) Biology of Crustacea. Vol 2. Academic Press, New York and London, pp 43–110.

    Google Scholar 

  • Wilson AH, Sherman RG (1975) Mapping of neuron somata in the thoracic nerve cord of the lobster using cobalt chloride. Comp Biochem Physiol 50 A: 47–50.

    Google Scholar 

  • Wyse GA, Maynard DM (1958) Joint receptors in the antennule of Panulirus argus. J Exp Biol 42: 521–535.

    Google Scholar 

  • Yules RB (1962) Responses from a proprioceptive organ of the crab, Sesarma reticulatum, during the moult cycle. Biol Bull 123: 660–669.

    Google Scholar 

  • Zeil J, Sandeman R, Sandeman DC (1985) Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J. Comp Physiol 157: 607–617.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New york

About this chapter

Cite this chapter

Laverack, M.S. (1987). The Nervous System of the Crustacea, with Special Reference to the Organisation of The Sensory System. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics