Skip to main content

Ontogenese Du Systeme Nerveux Central Des Chelicerates Et Sa Signification Eco-Ethologique

  • Chapter
Book cover Nervous Systems in Invertebrates

Summary

Ontogeny of the Central Nervous System in Chelicerates and its Eco-ethological Significance.

The comparative embryogeny of the central nervous system and especially ganglia in annelids, onychophorans, chelicerates, myriapods and crustaceans emphasizes certain characteristics found in all groups and some others limited to a few related groups or even to a single one. A common characteristic of all the groups studied during early development of the nervous system is the occurrence of segmental organs of ectodermal origin which give rise to ganglia.

These organs vary morphologically from one group to another. Several morphological types are distinguishable:

  • simple thickenings of the ventral embryonic ectoderm among onychophorans and Symphyla.

  • spherical or subspherical organs forming follicles, detached inwards from the ectoderm, in annelids, chilopods, diplopods, xiphosurans, pycnogonids, scorpions, pseudoscorpions, solpugids, spiders and opilions.

  • simple ectodermal folds unseparated from the ectoderm and opening outwards in Whip spiders (arachnids, amblypygi).

In different arthropod groups (chelicerates, xiphosurans, pycnogonids, solpugids, gonyleptid opilions), ventral organs seem to be the only ones generating nervous ganglia. In Pachylus quinamavidensis (gonyleptid opilions), six pairs of ventral organs give rise to the cerebral ganglia. This is the highest number found in arthropods; and they may hence be viewed as segmental organs related to neuromeres.

The number of ventral organs in Pachylus is correlated with the development of the neurons of the corpora pedunculata globuli which are integration centres forming 70% of the adult brain. In onychophorans, diplopods, solpugids, opilions and crustaceans, ventral organs persist during adult life.

The primitive embryonic affinities observed during the formation of ganglia in different groups are absent in Insects.

When Hanström published his work on Spiders at the beginning of the century, neuro-ethological studies were difficult to interpret since ecological, ethological and evolutionary data were lacking. Today, the classification of the spiders into four groups by protocerebral structure (Hanström 1935) corresponds to the phylogenetic pattern proposed by Platnick (1971). It would seem that it is the mechano- and chemo-receptive channels of communication of spiders which are correlated with their nocturnal habits. The visual channels and their evolutionary improvement for diurnal life, most elaborate in the Salticidae, appear to be related to the complex protocerebral structure. The change from a nocturnal to a diurnal life is doubtlessly crucial to the question. Hunting spiders (Salticidae) possess the most developed brain. It contains two pairs of optic masses and two integrating centres, the central body and the globuli of the corpora pedunculata. In sedentary spiders, the brain is much less developed; the optic masses are small and less differentiated; the corpora pedunculata are rudimentary, the glomeruli absent while the globuli and peduncle are completely lacking and the bridge rudimentary.

The Lycosid spiders tend towards a diurnal life, but are not as successfully as the Salticids. Neither do their optic structure (Munoz-Cuevas 1984) or their behavior (Tietjen and Rovner 1982) attain the degree of perfection found in the Salticids.

In the neuroanatomical classification by Hanstrom (1935) and that of Platnick (1971) Lycosids are placed at an intermediary level. The structure of the protocerebrum reflects this situation: the optic masses and the corpora pedunculata are less developed in lycosids than in salticids.

This evolutionary process, obvious in spiders, cannot be put forward to explain the highly developed corpora pedunculata in gonyleptid opilions. These Arachnids do not favor visual communication; their activity being, on the contrary, crepuscular or nocturnal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  • Aeschlimann A (1958) Développement embryonnaire d’Ornithodorus moubata (Murray) et transmission transovarienne de Borrelia duttoni. Acta tropica 15: 15–64.

    PubMed  CAS  Google Scholar 

  • Akesson B (1961) On the histological differentiation of the larvae of Pisione remota (Pisionidae, Polychaeta). Acta Zool intern tedskrift für zoologi, p 177–225.

    Google Scholar 

  • Akesson B (1962) The embryology of Tomopteris helgolandica (Polychaeta). Acta Zool Stockh 43: 135–199.

    Article  Google Scholar 

  • Babu KS (1975) Post-embryonic development of the central nervous system of the spider Argiope aurantia (Lucas). J Morphol 146: 325–342.

    Article  Google Scholar 

  • Babu KS (1985) Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth FG (ed) Neurobiology of arachnids. Berlin, Springer Verlag, p 3–19.

    Google Scholar 

  • Barrois J (1896) Mémoire sur le développement des Chelifer. Rev Suisse Zool 3: 461–498.

    Google Scholar 

  • Bazin F, Demeuzy N (1968) Existence d’organes intracérébraux énigmatiques chez le Crustacé Décapode Carcinus maenas. CR Acad Sci Paris 267: 356–358.

    Google Scholar 

  • Bazin F (1969) Etude comparée d’un organe deutocérébral chez les Crustacés Décapodes Reptantia. CR Acad Sci Paris 269: 958–961.

    Google Scholar 

  • Bazin F (1970) Etude comparée de l’, organe deutocérébral des Macroures Reptantia et des Anomoures (Crustacés Décapodes). Archs Zool Exp Gén 111: 245–364.

    Google Scholar 

  • Bazin F (1971) Le développement embryonnaire des organes deutocérébraux chez Astacus leptodaetylus Esch. (Crustacés, Décapode, Reptantia). Ann Embryol Morphol 4: 137–144.

    Google Scholar 

  • Brauer A (1895) Beiträge zur Kenntnis der Entwicklung Geschichte des Skorpions. Z wiss Zool 57: 351–435.

    Google Scholar 

  • Carribaburu A, Muñoz-Cuevas A (1986) Spontaneous electrical activity of the suboesophageal ganglion and circadian rhythms in scorpions. Exp Biol 45: 301–310.

    Google Scholar 

  • Crane J (1949) Comparative biology of salticid spiders of Rancho Grande, Venezuela. Part IX. An analysis of display. Zoologica 34: 159–214.

    Google Scholar 

  • Dogiel V (1913) Embryologische Studien on Pantopoden. Z wiss Zool 107: 575–741.

    Google Scholar 

  • Dohle W (1964) Die embryonal Entwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Gahrb (Anat) 81: 241–310.

    Google Scholar 

  • Fahrenbach WH (1979) The brain of the horseshoe crab (Limulus polyphemus) III. Cellular and synaptic organization of the corpora pedunculata. Cell Tissue Res 11: 163–199.

    Article  CAS  Google Scholar 

  • Forster L (1982) Visual communication in jumping spiders (Salticidae). In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton New-Jersey, p 161–210.

    Google Scholar 

  • Hanström B (1919) Zur Kenntnis der centralen Nervensystems der Arachnoiden und Pantopoden. Lund, Inuaugural Dissertation.

    Google Scholar 

  • Hanström B (1921) Über die Histologie und vergleichende Anatomie der Sehganglien und Globuli der Araneen. Kungl Svenska Vetensk Handlingar 61 (12).

    Google Scholar 

  • Hanström B (1923) Further notes on the central nervous system of arachnids: scorpions, phalangids and trapdoor spiders. J Comp Neural 35: 249–274.

    Article  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Berlin, Springer.

    Google Scholar 

  • Hanström B (1935) Fortgesetzte Untersuchungen über das Araneengehirn. Zool Jahrb (Anat) 59: 455–478.

    Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Bibliotheca Zool 13: 1–244.

    Google Scholar 

  • Holmgren N (1916) Zur Vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Kungl Svenska Vetensk Handlingar 56: 1–303.

    Google Scholar 

  • Iwanoff PP (1933) Die embryonale Entwicklung von Limulus moloccanus. Zool Jahrb (Anat) 56: 163–348.

    Google Scholar 

  • Jackson RR (1982) The behavior of communicating in jumping spiders (Salticidae). In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton New-Jersey, p 213–247.

    Google Scholar 

  • Juberthie C (1964) Recherches sur la biologie des Opilions. Ann Spéléol 19: 1–238.

    Google Scholar 

  • Juberthie C, Muñoz-Cuevas A (1971) Rôle des organes neuraux d’un Opilion Gonyleptidae, Pachylus quinamavidensis, dans la formation des globuli des corpora pedunculata. CR Acad Sci Paris 270: 1028–1031.

    Google Scholar 

  • Juberthie-Jupeau L (1967) Existence d’organes neuraux intracérébraux chez les Glomeridia (Diplopodes) épigés et cavernicoles. CR Acad Sci Paris 264: 89–92.

    CAS  Google Scholar 

  • Junqua C (1957) Aspects histologiques du système nerveux d’un Solufuge. Bull Soc Zool France 82: 136–138.

    Google Scholar 

  • Junqua C (1966) Recherches biologiques et histophysiologiques sur un Solifuge saharien Othoes saharae Panouse. Thèse, Faculté des Sciences, Paris.

    Google Scholar 

  • Kästner A (1952) Über zwei Entwicklungsstudien von Solifugen. Zool Anz 149: 8–20.

    Google Scholar 

  • Kennel J (1888) Entwicklungsgeschichte von Peripatus edwarsi Blanch, und Peripatus torquatus, n.sp. Arb Zool Inst Würzburg 8: 1–93.

    Google Scholar 

  • Kishinouye K (1892) On the development of Limulus longispina. J Cell Sci Tokyo 5: 53–100.

    Google Scholar 

  • Krafft B (1980) Les Systèmes de Communication chez les Araignées. In: 8. Internat. Arachn. Kongress Wien, p 197–213.

    Google Scholar 

  • Land M (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51: 443–470.

    PubMed  CAS  Google Scholar 

  • Land M (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of arachnids. Springer Verlag, Berlin, p 53–78.

    Google Scholar 

  • Legendre R (1959) Contribution à l’étude du système nerveux des Aranéides. Thèse, Faculté des Sciences, Paris.

    Google Scholar 

  • Le Guelte L, Witt PN (1971) Conséquences histologiques et comportementales de lésions (par laser) du ganglion susoesophagien de l’araignée: Araneus diadematus Cl. Rev Comp Animal 5: 19–26.

    Google Scholar 

  • Meier F (1967) Beiträge zur Kenntnis der postembryonalen Entwicklung der Spinnen Araneida labidognatha. Unter besonderer Berücksichtigung der Histogenese der Zentral-Nervensystems. Rev Suisse Zool 74: 1–127.

    PubMed  CAS  Google Scholar 

  • Millot J (1949) Classe des Arachnides (Arachnida). Morphologie générale et anatomie interne. In: Grassé PP (ed) Traité de zoologie Vol 6. Masson, Paris p. 263–319.

    Google Scholar 

  • Morgan TM (1891) A contribution to the embryology and phylogeny of the pycnogonids. Stud Biol Lab, J Hopkins Univ Baltimore 5: 1–72.

    Google Scholar 

  • Muñoz-Cuevas A (1969) Contribution à la connaissance de la biologie des Opilions Gonyleptidae (Arachnida). Thèse Doct 3e Cycle, Faculté des Sciences Paris.

    Google Scholar 

  • Muñoz-Cuevas A (1971) Etude du développement embryonnaire de Pachylus quinamavidansis (Arachindes, Opilions, Gonyliptidae). Bull Mus Natn Hist Nat 2e sér Zool 42: 1238–1250.

    Google Scholar 

  • Muñoz-Cuevas A (1973) Embryogenèse, organogenèse et rôle des organes ventraux et neuraux de Pachylus quinamavidensis (Arachnides, Opilions, Gonyleptidae). Comparaison avec les Annélides et d’ autres Arthropodes. Bull Mus Natn Hist Nat Paris 3e sér n° 196 Zool 128: 1517–1538.

    Google Scholar 

  • Muñoz-Cuevas A (1984) Photoreceptor structures and vision in arachnids and myriapods. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, NATO-ASI series A 74: 335–399.

    Google Scholar 

  • Nguyen Duy m (1971) Etude préliminaire sur la neurosécrétion céphalique chez le Diplopode Pénicillate Polyxenus lagurus (Myriapodes). CR Acad Sci Paris 42: 1238–1250.

    Google Scholar 

  • Pereyaslawzewa S (1901) Développement embryonnaire des Phrynes. Ann Sci Nat, 8e sér 13: 123–303.

    Google Scholar 

  • Pflugfelder 0 (1932) Über der Mechanismus der Segmentbildung bei Embryonalentwicklung und Anamorphose von Platyrrhacus amauros Attems. Z wiss Zool 140: 650.723.

    Google Scholar 

  • Pflugfeldquo;elder 0 (1948) Entwicklung von Peripatus amboinensis, n.sp. Zool 3ahrb (Anat) 69: 443–492.

    Google Scholar 

  • Platnick N (1971) The evolution of courtship behaviour in spiders. Bull Brit Arachnol Soc 2 (3): 40–47.

    Google Scholar 

  • Sahli F (1966) Contribution à l’étude de la périodomorphose et du système neurosécréteur des Diplopodes Iulides. Thèse Doct. Sci., Dijon.

    Google Scholar 

  • Schimkewitsch L, Schimkewitsch W (1911) Ein Beitrag zur Entwicklungsgeschichte der Tetrapneumones. Bull Acad Sci St-Pétersbourg 5: 8–10.

    Google Scholar 

  • Tiegs 0 (1940) The embryology and affinities of the Symphyla based on a study of Hanseniella agilis. Q J Microsc Sci 82: 1–225.

    Google Scholar 

  • Tietjen WJ Rovner JS (1982) Chemical communication in lycosid and other spiders. In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton New Jersey p 259–279.

    Google Scholar 

  • Viallanes H (1893) Etudes histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés. Ann Sci Nat Zool 14: 405–456.

    Google Scholar 

  • Weygoldt P (1964) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen (Chelonethi). Z Morphol Ökol Tiere 54: 1–106.

    Article  Google Scholar 

  • Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geisseispinne Tarantula marginemaculata C.L. Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphol 82: 137–199.

    Article  Google Scholar 

  • Weygoldt P (1977) Communication in crustaceans and arachnids In: Sebook ThA (ed) How animals communicate. Th. A. Sebook. Indiana Univ Press, Bloomington and London, p 303–333.

    Google Scholar 

  • Yamashita S (1985) Photoreceptor cells in the spider eye: Spectral sensitivity and efferent control. In: Barth FG (ed) Neurobiology of arachnids. Springer Verlag, Berlin, p 103–117.

    Google Scholar 

  • Yoshikura M (1954) Embryological studies on the liphistiid spider: Heptathela kimurai. Part I. Kumamoto J Sci Ser B 3: 41–48.

    Google Scholar 

  • Yoshikura M (1955) Embryological studies on the liphistiid spider: Heptathela kimurai. Part II. Kumamoto J Sci Ser B 2 (1): 1–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New york

About this chapter

Cite this chapter

Muñoz-Cuevas, A., Coineau, Y. (1987). Ontogenese Du Systeme Nerveux Central Des Chelicerates Et Sa Signification Eco-Ethologique. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics