Organisation and Development of the Peripheral Nervous System in Annelids

  • Susanna Elizabeth Blackshaw

Abstract

In adult leeches the properties of centrally located motoneurones and skin mechanosensory neurones are known in detail as are the territories that they innervate in the periphery and the morphology of the sensory terminals. The development of receptive fields by individual mechanosensory cells has been followed in leech embryos from the time of initial axon outgrowth, as has the regeneration of fields in the adult nervous system after peripheral nerve lesions, and the way in which receptive fields spread after deletion of neighbouring neurones. The use of immunocytological techniques has enabled peptides and amines to be localised within specific neurones that act to modulate the activity of peripheral targets. In addition to the well-characterised centrally located neurones a number of peripheral neurones in Hirudo have been identified and their functions established, including large diameter stretch receptor afferents innervating body wall muscle and small diameter chemosensory, photosensory and water-movement detecting neurones located within specialised epidermal sense organs. The development of new techniques for cell lineage analysis has made it possible to study the embryonic origin of the peripheral nervous system as well as that of the CNS.

Keywords

Permeability Migration Amide Germinal Arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford.Google Scholar
  2. Anderson G (1978) Postembryonic development of the visual system of the locust Schistocerca gregaria. J Embryol Exp Morphol 45: 55–83.PubMedGoogle Scholar
  3. Blackshaw SE (1981a) Morphology and distribution of touch cell terminals in the skin of the leech. J Physiol 320: 219–228.PubMedGoogle Scholar
  4. Blackshaw SE (1981b) Morphology of nociceptive terminals in the body wall of the leech. J Physiol 317: 81–82.Google Scholar
  5. Blackshaw SE (1981c) Sensory cells and motoneurons. In: Muller KJ, Nicholls JG, Sent GS (eds) Neurobiology of the leech. Cold Spring Harbor Publications, pp 51–78.Google Scholar
  6. Blackshaw SE (1985) The cellular basis of coordination within and between ganglia in annelids. In: Bush BMH, Clarac F (eds) Co-ordination of motor behaviour. SEB Seminar 24, Cambridge University Press, pp 63–89.Google Scholar
  7. Blackshaw SE (1987) Cell lineage and the development of identified neurones in the leech. In: Stirling RV, Stern CD, Parnavelas JG (eds) The making of the nervous system. Oxford University Press (in press).Google Scholar
  8. Blackshaw SE, Thompson SWN (1986) Hyperpolarising response to stretch in neurones innervating body wall muscle in the leech. J Physiol 371: 58P.Google Scholar
  9. Blackshaw SE, Thompson, SWN (1987) Hyperpolarising responses to stretch in sensory neurones innervating leech body wall muscle. (Submitted)Google Scholar
  10. Blackshaw SE, Nicholls JG, Parnas I (1982a) Physiological responses, receptive fields and terminal arborisations of nociceptive cells in the leech. J Physiol 326: 251–260.PubMedGoogle Scholar
  11. Blackshaw SE, Nicholls JG, Parnas I (1982b) Expanded receptive fields of cutaneous mechanoreceptor cells following deletion of single neurones in the CNS of the leech. J Physiol 326: 261–268.PubMedGoogle Scholar
  12. Blackshaw SE, Mackay DA, Thompson SWN (1984) The fine structure of a leech stretch receptor neurone and its efferent input. J Physiol 360: 76P.Google Scholar
  13. Bowman WC, Zaimis E (1958) The effects of adrenaline, noradrenaline and isoprenaline on skeletal muscle contractions in the cat. J Physiol 144: 92–107.PubMedGoogle Scholar
  14. Bush BMH (1981) Non-impulsive stretch receptors in crustaceans. In: Roberts A, Bush BMH (eds) Neurones without impulses. SEB Seminar Series 6, Cambridge University Press, pp 147–176.Google Scholar
  15. Cline HT (1983) 3H-GABA uptake selectively lables identifiable neurons in the leech central nervous system. J Comp Neurol 215: 351–358.PubMedCrossRefGoogle Scholar
  16. Cline HT, Nusbaum MP, Kristan WB (1985) Identified GABAergic inhibitory motor neurons in the leech central nervous system take up GABA. Brain Res 348: 359–362.PubMedCrossRefGoogle Scholar
  17. Dales RP (1967) Annelids. Hutchinson. University Library, London.Google Scholar
  18. Dawson AB (1928) Intermuscular cells of the earthworm. J Comp Neurol 32: 155–171.CrossRefGoogle Scholar
  19. Derosa SY, Friesen WO (1981) Morphology of leech sensilla: observations with the scanning electron microscope. Biol Bull 160: 383–393.CrossRefGoogle Scholar
  20. Dorsett DA (1976) The structure and function of proprioceptors in softbodied invertebrates. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman & Hall, pp 443–485.Google Scholar
  21. Dorsett DA, Hyde R (1969) The fine structure of the compound sense organs on the cirri of Nereis diversicolor. Z Zellforsch 97: 512–527.PubMedCrossRefGoogle Scholar
  22. Drewes CD, Fourtner CR (1976) Stretch-sensitive neural units in the body wall of the earthworm, Lumbricus terrestris. L. J Exp Biol 65: 39–50.PubMedGoogle Scholar
  23. Elliot EJ (1984) Chemoreception in the leech. Soc Neurosci Abstr 10: 654.Google Scholar
  24. Elliot EJ (1985a) Leech lip sensilla detect NaCl and arginine in blood. Chem Senses 10: 461.Google Scholar
  25. Elliot EJ (1985b) Amiloride blocks the behavioural feeding response but not the nerve response to feeding stimuli in the leech. Soc Neurosci Abstr 11: 969.Google Scholar
  26. Elliot EJ (1986a) Morphology of chemosensory organs required for feeding in the leech Hirudo medicinalis. J Morphol (submitted).Google Scholar
  27. Elliot EJ (1986b) Chemosensory stimuli in feeding behaviour of the leech Hirudo medicinalis. J Comp Physiol A 159: 391–401.CrossRefGoogle Scholar
  28. Fernandez J (1978) Structure of the leech nerve cord: Distribution of neurons and organisation of fiber pathways, J Comp Neurol 180: 165–192.PubMedCrossRefGoogle Scholar
  29. Fernandez J (1980) Embryonic development of the glossiphoniid leech Theromyzon rude; characterization of developmental stages. Dev Biol 76: 245–262.PubMedCrossRefGoogle Scholar
  30. Fernandez J, Olea N (1982) Embryonic development of glossiphoniid leeches. In: Harrison FW, Cowden RR (eds) Developmental biology of freshwater invertebrates. Liss, New York, pp 317–361.Google Scholar
  31. Fernandez J, Stent GS (1980) Embryonic development of the glossiphoniid leech Theromyzon rude: Structure and development of the germinal bands. Dev Biol 78: 407–434.PubMedCrossRefGoogle Scholar
  32. Fischer E (1969) Morphological background of the regulation of nephridial activity in the horse leech (Haemopis sanguisuga L.). Study of nephridial innervation by means of esterase reaction. Acta Biol Acad Sci Hung 20: 381–387.PubMedGoogle Scholar
  33. Flanagan T, Flaster MS, MacInnes J, Zipser B (1986) Probing structural homologies in cell-specific glycoproteins in the leech CNS. Brain Res 378: 152–158.PubMedCrossRefGoogle Scholar
  34. Flock A (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Oto-Laryngol Suppl 199: 1–90.Google Scholar
  35. Frank E, Jansen JKS, Rinvik E (1975). A multisomatic axon in the central nervous system of the leech. J Comp Neurol 159: 1–13.PubMedCrossRefGoogle Scholar
  36. Friesen WO (1981) Physiology of water motion detection in the medicinal leech. J Exp Biol 92: 255–275.PubMedGoogle Scholar
  37. Fuhner J (1917) Ein Vorlesungsversuch zur Demonstration der erregbarkeitssteigernden Wirkung des Physostigmins. Arch Exp Pathol Pharmakol 82: 81–85.CrossRefGoogle Scholar
  38. Gardner-Medwin AR, Jansen JKS, Taxt T (1973) The “giant” axon of the leech. Acta Physiol Scand 87: 30A–31A.Google Scholar
  39. Gaskell JR (1914) The chromaffin system of annelids and the relation of this system to the contractile vascular system in the leech Hirudo medicinalis. Phil Trans R Soc Lond Series B 205: 153–207.CrossRefGoogle Scholar
  40. Gillon JW, Wallace BG (1984) Segmental variation in the arborisation of identified neurones in the leech central nervous system. J Comp Neurol 228: 142–148.PubMedCrossRefGoogle Scholar
  41. Gimlich RL, Braun J (1985) Improved fluorescent compound for tracing cell lineage. Dev Biol 109: 509–514.PubMedCrossRefGoogle Scholar
  42. Glover JC, Mason A (1986) Morphogenesis of an identified leech neuron: segmental specification of axonal outgrowth. Dev Biol 115: 256–260.PubMedCrossRefGoogle Scholar
  43. Granzow B, Friesen WO, Kristan WN (1985) Physiological and morphological analysis of synaptic transmission between leech motor neurons. J Neurosci 5: 2035–2050.PubMedGoogle Scholar
  44. Gray J, Lissman HW (1938) Studies in animal locomotion VII. Locomotory reflexes in the earthworm.Google Scholar
  45. Gunther J (1971) Mikroanatomie des Bauchmarks von Lumbricus terrestris. Z Morph Okol Tiere 70: 141–182.Google Scholar
  46. Hanson J, Lowy D (1960) Structure and function of the contractile apparatus in the muscles of invertebrate animals. In: Bourne GH (ed) Structure and function of muscle. Vol I. Academic Press, New York.Google Scholar
  47. Havet J (1899) Structure du système nerveux des annélides. La Cellule 17: 65–136.Google Scholar
  48. Herter K (1929) Reizphysiologisches Verhalten und Parasitismus des Entenegels Protociepsis tesselata O.F. Mull. Z Vergl Physiol 10: 272–308.CrossRefGoogle Scholar
  49. Hidaka T, Ito Y, Kuriyama H, Tashiro N (1969) Neuromuscular transmission in the longitudinal layer of somatic muscle in the earthworm. J Exp Biol 50: 417–430.PubMedGoogle Scholar
  50. Hockfield S, McKay RDG (1983) Monoclonal antibodies demonstrate the organization of axons in the leech. J Neurosci 3: 369–375.PubMedGoogle Scholar
  51. Hoyle G (1983) Muscles and their neural control. John Wiley & Sons Inc.Google Scholar
  52. Ito Y, Kuriyama H, Tashiro N (1969) Effects of Y-aminobutyric acid and Picrotoxin on the permeability of the longitudinal muscle of the earthworm to various anions. J Exp Biol 51: 363–375.PubMedGoogle Scholar
  53. Jellies J, Loer CM, Kristan WB (1985) Morphogenisis of segment specific innervation patterns in an identified leech neuron. Soc Neurosci Abstr 11: 956.Google Scholar
  54. Johansen J, Hockfield S, McKay RDG (1984a) Distribution and morphology of nociceptive cells in three species of leeches. J Comp Neurol 226: 262–273.Google Scholar
  55. Johansen J, Hockfield S, McKay RDG (1984b) Axonal projections of mechanosensory axons in the connectives and peripheral nerves of the leech Hemopis marmorata. J Comp Neurol 226: 255–262.PubMedCrossRefGoogle Scholar
  56. Johansen J, Thompson I, Stewart RR, McKay RDG (1985) Expression of surface antigens by the monoclonal antibody Lan 3–2 during embryonic development of the leech. Brain Res 343: 1–7.PubMedCrossRefGoogle Scholar
  57. Knapp MF, Mill PJ (1971) The fine structure of ciliated sensory cells in the epidermis of the earthworm Lumbricus terrestris. Tissue Cell 3: 623–636.PubMedCrossRefGoogle Scholar
  58. Kramer AP, Goldman JR (1981) The nervous system of the glossiphoniid leech Haementeria ghilianii I. Identification of neurones. J Comp Physiol A 144: 435–448.CrossRefGoogle Scholar
  59. Kramer AP, Kuwada JY (1983) Formation of the receptive fields of leech mechanosensory neurons during embryonic development. J Neurosci 3: 2474–2486.PubMedGoogle Scholar
  60. Kramer AP, Stent GS (1985) Developmental arborisation of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern. J Neurosci 5: 768–775.PubMedGoogle Scholar
  61. Kramer AP, Weisblat DA (1985) Developmental neural kinship groups in the leech. J Neurosci 5: 388–407.PubMedGoogle Scholar
  62. Kretz JR, Stent GS, Kristan WB (1976) Photosensory input pathways in the medicinal leech. J Comp Physiol 106: 1–37.CrossRefGoogle Scholar
  63. Kristan WB, Stent GS (1976) Peripheral feedback in the leech swimming rhythm. Cold spring Harbor Symp Quart Biol 40: 663–674.Google Scholar
  64. Kuffler D (1978) Neuromuscular transmission in longitudinal muscle of the leech Hirudo medicinalis. J Comp Physiol 124: 333–338.CrossRefGoogle Scholar
  65. Kuhlman JR, Li C, Calabrese RL (1985a) FMRF-amide-like substances in the leech. I. Immunocytochemical localisation. J Neurosci 5: 2301–2309.PubMedGoogle Scholar
  66. Kuhlman JR, Li C, Calabrese RL (1985b) FMRF-amide-like substances in the leech. II. Bioactivity on the heartbeat system. J Neurosci 5: 2310–2317.PubMedGoogle Scholar
  67. Kuwada JY, Kramer AP (1983) Embryonic development of the leech nervous system: Primary axon outgrowth of identified neurons. J Neurosci 3: 2098–2111.PubMedGoogle Scholar
  68. Lasanky A, Fuortes MGF (1969) The site of origin of electrical responses in visual cells of the leech, Hirudo medicinalis. J Cell Biol 42: 241–252.CrossRefGoogle Scholar
  69. Lent CM (1973) Retzius cells: neuroeffectors controlling mucus release by the leech. Science 179: 693–696.PubMedCrossRefGoogle Scholar
  70. Lent CM (1981) Morphology of neurons containing monoamines within leech segmental ganglia. J Exp Zool 216: 311–316.CrossRefGoogle Scholar
  71. Lent CM (1985) Serotonergic modulation of the feeding behaviour of the medicinal leech. Brain Res Bull 14: 643–655.PubMedCrossRefGoogle Scholar
  72. Loer CM, Jellies J, Kristan WB (1985) The possible role of target interactions in the development of segment-specific differences of an identified neuron. Soc Neurosci Abstr 11: 957.Google Scholar
  73. Macagno ER (1978) A mechanism for the formation of synaptic connections in the arthopod visual system. Nature 275: 318–320.PubMedCrossRefGoogle Scholar
  74. Macagno ER (1980) Number and distribution of neurones in leech segmental ganglia. J Comp Neurol 190: 283–302.PubMedCrossRefGoogle Scholar
  75. Mann KH (1962) Leeches (Hirudinea). Pergamon Press, New York.Google Scholar
  76. Maranto AR, Calabrese RL (1984) Neural control of the hearts in the leech, Hirudo medicinalis. I. Anatomy electrical coupling and innervation of the hearts. J Comp Physiol A 154: 367–380.CrossRefGoogle Scholar
  77. Marshall CG, Lent CM (1984) Calcium-dependent action potentials in leech giant salivary gland cells. J Exp Biol 113: 367–380.PubMedGoogle Scholar
  78. Mason AJR, Glover JC, Kristan WB (1984) Embryonic development of segmentally specialised serotonergic neurones in the leech Hirudo medicinalis. Soc Neurosci Abstr 10: 1033.Google Scholar
  79. Mason A, Kristan WB (1982) Neuronal excitation, inhibition and modulation of leech longitudinal muscle. J Comp Physiol 146: 527–536.CrossRefGoogle Scholar
  80. McKay RDG, Hockfield S, Johansen J, Thompson I, Frederiksen K (1983) Surface molecules identify groups of growing axons. Science 222: 788–794.PubMedCrossRefGoogle Scholar
  81. Mill PJ (1982) Recent developments in earthworm neurobiology. Comp Biochem Physiol 73A: 641–661.CrossRefGoogle Scholar
  82. Mill PJ, Knapp MF (1967) Efferent sensory impulses and the innervation of tactile receptors in Allolobophora longa Ude and Lumbricus terrestris Linn. Comp Biochem Physiol 23: 263–276.PubMedCrossRefGoogle Scholar
  83. Miller JB, Aidley DJ (1973) Two rates of relaxation in the dorsal longitudinal muscle of a leech. J Exp Biol 58: 91–103.Google Scholar
  84. Mistick DC (1978) Neurones in the leech that facilitate an avoidance behaviour following nearfield water disturbances. J Exp Biol 75: 1–23.PubMedGoogle Scholar
  85. Moment G, Johnson J (1979) The structure and distribution of external sense organs in newly hatched and mature earthworms. J Morphol 159: 1–15.CrossRefGoogle Scholar
  86. Müller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Publications.Google Scholar
  87. Nicholls JG (1987) The search for connections. Sunderland, M.A. Sinauer Press.Google Scholar
  88. Nicholls JG, Baylor DA (1968) Specific modalities and receptive fields of sensory neurones in the CNS of the leech. J Neurophysiol 31: 740–756.PubMedGoogle Scholar
  89. Ogawa F (1934) The number of ganglion cells and nerve fibres in the nervous system of the earthworm Pheretima communissima. Sci Rep Tohoku Univ 8: 345–368.Google Scholar
  90. Ogawa F (1939) The nervous system of earthworm Pheretima communissima in different ages. Sci Rep Tokohu Univ 13: 395–488.Google Scholar
  91. Ort CA, Kristan WB, Stent GS (1974) Neuronal control of swimming in the medicinal leech. II. Identification and connections of motor neurons. J Comp Physiol 94: 121–154.CrossRefGoogle Scholar
  92. O’Shea M, Evans PD (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J Exp Biol 79: 169–190.Google Scholar
  93. Phillips CE, Friesen WD (1982) Ultrastructure of the water-movement-sensitive sensilla in the medicinal leech. J Neurobiol 13: 473–486.PubMedCrossRefGoogle Scholar
  94. Rude S (1969) Monoamine containing neurons in the central nervous system and peripheral nerves of the leech, Hirudo medicinalis. J Comp Neurol 136: 349–371.CrossRefGoogle Scholar
  95. Sargent PB (1977) Synthesis of acetylcholine by excitatory motoneurones in central nervous system of the leech. J Neurophysiol 40: 453–460.PubMedGoogle Scholar
  96. Sawyer R (1986) Leech biology and behaviour. Oxford University Press.Google Scholar
  97. Schain RJ (1961) Effects of 5-hydroxytryptamine on the dorsal muscle of the leech Hirudo medicinalis. Br J Pharmacol 16: 257–261.Google Scholar
  98. Schliep W (1936) Ontogenie der Hirudineen. In: Bronn GH (ed) Klassen und Ordnungen des Tierreichs vol 4, div. III book 4, part 2, 1–121, Akad Verlagsgesellschaft, Leipzig.Google Scholar
  99. Shankland M, Wiesblat DA (1984) Stepwise commitment of blast cell fates during the positional specification of the 0 and P cell lines in the leech embryo. Dev Biol 106: 326–342.PubMedCrossRefGoogle Scholar
  100. Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fibre patterns and connections. Proc Natl Acad Sci USA 50: 703–710.PubMedCrossRefGoogle Scholar
  101. Stent GS, Weisblat DA (1985) Cell lineage in the development of invertebrate nervous systems. Ann Rev Neurosci 8: 45–70.PubMedCrossRefGoogle Scholar
  102. Stent GS, Weisblat DA, Blair SS, Zackson SL (1982) Cell lineage in the development of the leech nervous system. In: Spitzer N (ed) Neuronal development. Plenum, New York, pp 1–44.Google Scholar
  103. Stewart RR, Macagno E (1984) The development of segmental differences in cell number in the CNS of the leech. Soc Neurosci Abstr 10: 512.Google Scholar
  104. Stewart RR, Macagno E, Zipser B (1985) The embryonic development of peripheral neurons in the body wall of the leech, Haemopis marmorata. Brain Res 332: 150–157.PubMedCrossRefGoogle Scholar
  105. Stewart RR, Spergel D, Macagno ER (1986) Segmental differentiation in the leech nervous system: the genesis of cell number in the segmental ganglia of Haemopis marmorata. J Comp Neurol 253; 253–259.PubMedCrossRefGoogle Scholar
  106. Stuart AE (1970) Physiological and morphological properties of motoneurones in the central nervous system of the leech. J Physiol 209: 627–646.PubMedGoogle Scholar
  107. Thompson SWN (1986) Morphological and physiological studies of a stretch receptor neurone in the leech Hirudo medicinalis. PhD Thesis, University of Glasgow.Google Scholar
  108. Thompson W, Stent, GS (1976a) Neuronal control of heartbeat in the medicinal leech. I. Generation of the vascular constriction rhythm by heart motor neurons. J Comp Physiol 111: 261–279.CrossRefGoogle Scholar
  109. Thompson W, Stent GS (1976b) Neuronal control of hearbeat in the medicinal leech. II. Intersegmental coordination of heart motoneuron activity by heart interneurons. J Comp Physiol 111: 281–307.CrossRefGoogle Scholar
  110. Thompson W, Stent GS (1976c) Neuronal control of heartbeat in the medicinal leech. III. Synaptic relations of the heart interneurons. J Comp Physiol 111: 309–333.CrossRefGoogle Scholar
  111. Torrence SA (1984) Neuroblast migration in leech embryos. Soc Neurosci Abstr 10: 512.Google Scholar
  112. Torrence SA, Stuart DK (1986) Gangliogenesis in leech embryos: Migration of neural precursor cells. J Neurosci 6: 2736–2746.PubMedGoogle Scholar
  113. Van Essen DC, Jansen JKS (1977) The specificity of reinnervation by identified sensory and motor neurons in the leech. J Comp Neurol 171: 433–454.PubMedCrossRefGoogle Scholar
  114. Walker RJ, Woodruff GN, Kerkut GA (1968) The effect of acetylcholine and 5-hydroxytryptamine on electrophysiological recordings from muscle fibres of the leech Hirudo medicinalis. Comp Biochem Physiol 24: 987–990.PubMedCrossRefGoogle Scholar
  115. Walker RJ, Woodruff GN, Kerkut GA (1970) The action of cholinergic antagonists on spontaneous excitatory potentials recorded from the body wall of the leech, Hirudo medicinalis. Comp Biochem Physiol 32: 690–701.Google Scholar
  116. Wallace BG (1981a) Neurotransmitter chemistry. In: Müller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the Leech. Cold Spring Harbor Publications, pp 147–172.Google Scholar
  117. Wallace BG (1981b) Distribution of AChE in cholinergic and non-cholinergic neurons. Brain Res 219: 190–195.PubMedCrossRefGoogle Scholar
  118. Wallace BG, Gillon JW, (1982) Characterization of acetylcholinesterase in individual neurons in the leech central nervous system. J Neurosci 2: 1108–1118.PubMedGoogle Scholar
  119. Waither JB (1966) Single cell responses from the primitive eyes of an annelid. In: Bernhard CG (ed) The functional organization of the compound eye. Oxford, Pergamon Press, pp 329–366.Google Scholar
  120. Weisblat DA (1981) Development of the nervous system. In: Muller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the leech. Cold Spring Harbor Pulications.Google Scholar
  121. Weisblat DA, Sawyer R, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202: 1295–1298.PubMedCrossRefGoogle Scholar
  122. Weisblat DA, Harper G, Stent GS, Sawyer RT (1980a) Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis. Dev Biol 76: 58–78.PubMedCrossRefGoogle Scholar
  123. Weisblat DA, Zackson SS, Blair SS, Young JD (1980b) Cell lineage analysis by intracellular injection of fluorescent tracers. Science 209: 1538–1541.PubMedCrossRefGoogle Scholar
  124. Weisblat DA, Kim SY, Stent GS (1984) Embryonic origins of cells in the leech Helobdella triserialis. Dev Biol 104: 65–85.PubMedCrossRefGoogle Scholar
  125. Wenning A (1983) A sensory neuron associated with the nephridia of the leech Hirudo medicinalis L. J Comp Physiol 152: 455–458.CrossRefGoogle Scholar
  126. Wenning A (1985) Do the nephridial nerve cells serve as osmoreceptors in the leech? Verh Dtsch Zool Ges 78 (in press).Google Scholar
  127. Wenning A, Cahill MA (1986) Nephridial innervation in the leech Hirudo medicinalis L. Cell Tissue Res (in press).Google Scholar
  128. Whitman CO (1878) The embryology of Clepsine. Quart J Microsc Sci 18: 215–315.Google Scholar
  129. Whitman CO (1886) The leeches of Japan. Quart J Microsc Sci 26: 317–416.Google Scholar
  130. Wilkinson JM, Coggeshall RE (1975) Axonal numbers and sizes in the connectives and peripheral nerves of the leech. J Comp Neurol 162: 387–396.PubMedCrossRefGoogle Scholar
  131. Willard Al (1981) Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J Neurosci 1: 936–944.PubMedGoogle Scholar
  132. Yaksta-Sauerland BA, Coggeshall RE (1973) Neuromuscular junctions in the leech. J Comp Neurol 151: 85–99.PubMedCrossRefGoogle Scholar
  133. Yau KW (1976a) Physiological properties and receptive fields of mechanosensory neurones in the head ganglion of the leech: comparison with homologous cells in segmental ganglia. J Physiol 263: 489–512.PubMedGoogle Scholar
  134. Yau KW (1976b) Receptive fields, geometry and conduction blocks of sensory neurones in the CNS of the leech. J Physiol 262: 513–538.Google Scholar
  135. Young SR, Dedwyler RD, Friesen WO (1981) Responses of the medicinal leech to water waves. J Comp Physiol 144: 111–116.CrossRefGoogle Scholar
  136. Zipser B (1979) Identifiable neurons controlling penile eversion in the leech. J Neurophysiol 42: 455–464.PubMedGoogle Scholar
  137. Zipser B (1982) Complete distribution patterns of neurons with characteristic antigens in the leech central nervous system. J Neurosci 2: 1453–1464.PubMedGoogle Scholar
  138. Zipser B, McKay RG (1981) Monoclonal antibodies distinguish identifiable neurones in the leech. Nature 289: 549–554.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Susanna Elizabeth Blackshaw
    • 1
  1. 1.Institute of PhysiologyUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations