Skip to main content

Principles of Electrical Methods for Studying Membrane Movements of Ions

  • Chapter
Membrane Physiology

Abstract

The aim of this chapter is to collect and introduce the concepts and principles underlying the methods commonly employed in studies in which the electrical and ionic properties of biological membranes are being investigated. The survey presented is not comprehensive. Nevertheless, it is intended to provide a sufficient background to enable the newcomer to follow the original literature and advanced reviews in this field with a degree of familiarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. (London) 148:127–160.

    CAS  Google Scholar 

  2. Strickholm, A., and B. G. Wallin. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. J. Gen. Physiol. 50:1929–1953.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, A. M., J. L. Walker, Jr., an. B. Sutton. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J. Gen. Physiol. 56:559–582.

    Article  PubMed  CAS  Google Scholar 

  4. Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  5. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108:37–77.

    CAS  Google Scholar 

  6. Ussing, H. H. 1949. The distinction by means of tracers between active transport and diffusion.Acta Physiol Scand. 19:43–56.

    Article  CAS  Google Scholar 

  7. Hodgkin, A. L., and A. F. Huxley. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (London) 116:449–472.

    CAS  Google Scholar 

  8. Patlak, C. S. 1960. Derivation of an equation for the diffusion potential. Nature (London) 188:944–945.

    Article  CAS  Google Scholar 

  9. Curran, P. E., and S. G. Schultz. 1968. Transport across membranes: General principles. In: Handbook of Physiology, Section 6, Volume III. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1217–1243.

    Google Scholar 

  10. Schultz, S. G., and P. F. Curran. 1968. Intestinal absorption of sodium chloride and water. In: Handbook of Physiology, Section 6, Volume III. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 1245–1275.

    Google Scholar 

  11. Sjodin, R.A. 1965. The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. Gen. Physiol. 48:777–795.

    Article  PubMed  CAS  Google Scholar 

  12. Horowicz, P., P. W. Gage, and R. S. Eisenberg. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51:193s-203s.

    PubMed  CAS  Google Scholar 

  13. Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Proc. Cambridge Philos. Soc. 26:339–409.

    CAS  Google Scholar 

  14. Hodgkin, A. L., and R. D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. (London) 128:61–88.

    CAS  Google Scholar 

  15. Heckmann, K. 1972. Single file diffusion.Biomembranes 3:127–153.

    PubMed  CAS  Google Scholar 

  16. Spalding, B. C., O. Senyk, J. G. Swift, and P. Horowicz. 1981. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle. Am. J. Physiol. 214:C68-C75.

    Google Scholar 

  17. Armstrong, C. M. 1975. Potassium pores of nerve and muscle membranes. In: Membranes: A Series of Advances, Volume 3. G. Eisenman, ed. Dekker, New York. pp. 325–358.

    Google Scholar 

  18. Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes. In: Membranes: A Series of Advances, Volume 3. G. Eisenman, ed. Dekker, New York, pp. 255–323.

    Google Scholar 

  19. Begenisich, T. 1982. Ionic permeation through channels in excitable cells: How many ions per pore? In: Membranes and Transport, Volume 2. A. N. Martonosi, ed. Plenum Press, New York. New York. pp. 373–378.

    Google Scholar 

  20. Hamill, P. O., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  21. Sakmann, B., and E. Neher. 1983. Single Channel Recording. Plenum Press, New York.

    Google Scholar 

  22. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  23. Conti, F., and E. Neher. 1980. Single channel recordings of K + currents in squid axons. Nature (London) 285:140–143.

    Article  CAS  Google Scholar 

  24. Horn, R., and J. Patlak. 1980. Single channel currents from excised patches of muscle membrane. Proc. Natl. Acad. Sci. USA 77:6930–6934.

    Article  PubMed  CAS  Google Scholar 

  25. Sigworth, F. J., and E. Neher. 1980. Single Na+ channel currents observed in cultured rat muscle cells. Nature (London) 287:447–449.

    Article  CAS  Google Scholar 

  26. Fenwick, E. M., A. Marty, and E. Neher. 1982. Sodium and calcium channels in bovine chromaffin cells. J. Physiol. (London) 331:599–635.

    CAS  Google Scholar 

  27. Frankenhaeuser, B., and A. L. Hodgkin. 1956. The aftereffects of impulses in the giant nerve fibers of Loligo. J. Physiol. (London) 131:341–376.

    CAS  Google Scholar 

  28. Noble, D., and R. W. Tsien. 1969. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres.J. Physiol. (London) 200:205–231.

    CAS  Google Scholar 

  29. Armstrong, C. M., and F. Bezanilla. 1973. Currents related to the movement of the gating particles of the sodium channels. Nature (London) 242:459–461.

    Article  CAS  Google Scholar 

  30. Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation- contraction coupling.Nature (London) 242:244–246.

    Article  CAS  Google Scholar 

  31. Meves, H. 1976. The effect of zinc on the late displacement current in squid giant axons. J. Physiol. (London) 254:787–801.

    CAS  Google Scholar 

  32. Adrian, R. H., and W. Aimers. 1976. The voltage dependence of membrane capacity. J. Physiol. (London) 254:317–338.

    CAS  Google Scholar 

  33. Schneider, M. F., and W. K. Chandler. 1976. Effects of membrane potential on the capacitance of skeletal muscle fibers. J. Gen. Physiol. 67:125–163.

    Article  PubMed  CAS  Google Scholar 

  34. Hodgkin, A. L., A. F. Huxley, and B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (London) 116:424–448.

    CAS  Google Scholar 

  35. Tasaki, I., and K. Frank. 1955. Measurement of the action potential of myelinated nerve fiber. Am. J. Physiol. 182:572–578.

    PubMed  CAS  Google Scholar 

  36. Stampfli, R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia 10:508–509.

    Article  PubMed  CAS  Google Scholar 

  37. Frankenhaeuser, B. 1957. A method for recroding resting and action potentials in the isolated myelinated nerve fiber of the frog. J. Physiol. (London) 135:550–559.

    CAS  Google Scholar 

  38. Morad, M., and W. Trautwein. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pfluegers Arch. 299:66–82.

    Article  CAS  Google Scholar 

  39. New, W., and W. Trautwein. 1972. Inward membrane currents in mammalian myocardium. Pfluegers Arch. 334:1–23.

    Article  CAS  Google Scholar 

  40. Kovacs, L., and M. F. Schneider. 1978. Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres. J. Physiol. 277:483–506.

    PubMed  CAS  Google Scholar 

  41. Horowicz, P., and M. F. Schneider. 1981. Membrane charge movement in contracting and non-contracting muscle fibres. J. Physiol. (London) 314:565–593.

    CAS  Google Scholar 

  42. Horowicz, P., and M. F. Schneider. 1981. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J. Physiol. (London) 314:595–633.

    CAS  Google Scholar 

  43. Julian, F. J., J. W. Moore, and D. E. Goldman. 1962. Membrane potentials of the lobster giant axon obtained by use of the sucrose gap technique. J. Gen. Physiol. 45:1195–1216.

    Article  PubMed  CAS  Google Scholar 

  44. Adrian, R. H., and W. H. Freygang. 1962. The potassium and chloride conductance of frog muscle membrane. J. Physiol. (London) 163:61–103.

    CAS  Google Scholar 

  45. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol. (London) 208:607–644.

    CAS  Google Scholar 

  46. Kostyuk, P. G., O. A. Krishtal, and V. I. Pidoplichko. 1981. Calcium inward current and related charge movements in the membrane of snail neurons. J. Physiol. (London) 310:403–421.

    CAS  Google Scholar 

  47. Lee, K. S., N. Akaike, and A. M. Brown. 1978. Properties of internally perfused, voltage-clamped, isolated nerve cell bodies. J. Gen. Physiol. 71:489–507.

    Article  PubMed  CAS  Google Scholar 

  48. Verveen, A. A., and L. F. Delice. 1974. Membrane noise. Prog. Biophys. Mol. Biol. 28:189–265.

    Article  PubMed  CAS  Google Scholar 

  49. Conti, F., and E. Wanke. 1975. Channel noise in nerve membranes and lipid bilayers. Q. Rev. Biophys. 8:451–506.

    Article  PubMed  CAS  Google Scholar 

  50. Stevens, C. F. 1975. Principles and applications of fluctuation analysis: A non-mathematical introduction. Fed. Proc. 34:1364–1369.

    PubMed  CAS  Google Scholar 

  51. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature (London) 260:799–802.

    Article  CAS  Google Scholar 

  52. Stevens, C. F. 1972. Inferences about membrane properties from electrical noise measurements. Biophys. J. 12:1028–1047.

    Article  PubMed  CAS  Google Scholar 

  53. Hooge, F. N. 1970. 1/f noise in the conductance of ions in aqueous solutions.Phys. Lett. 33A.169–170.

    Google Scholar 

  54. Delice, L. J., and D. R. Firth. 1971. Spontaneous voltage fluctuations in glass microelectrodes. IEEE Trans. Biomed. Eng. 18:339–351.

    Article  Google Scholar 

  55. Delice, L. J., and J. P. L. M. Michalides. 1972. Electrical noise from synthetic membranes. J. Membr. Biol. 9:261–290.

    Article  Google Scholar 

  56. Derksen, H. E. 1965. Axon membrane voltage fluctuations. Acta Physiol. Pharmacol. Neer. 13:373–466.

    Google Scholar 

  57. Verveen, A. A., and H. E. Derksen. 1965. Fluctuations in membrane potential of axons and the problem of coding. Kybernetik 2:152–160.

    Google Scholar 

  58. Hill, T. L., and Y. Chen. 1972. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K channels. Biophys. J. 12:948–959.

    Article  PubMed  CAS  Google Scholar 

  59. Fishman, H. M., L. E. Moore, and D. M. Poussart. 1975. Potassium ion conduction noise in squid axon membrane. J. Membr. Biol. 24:305–328.

    Article  PubMed  CAS  Google Scholar 

  60. van den Berg, R. J., J. doede, and A. A. Verveen. 1975. Conductance fluctuations in Ranvier nodes.Pfluegers Arch. 360:17–23.

    Article  Google Scholar 

  61. Nonner, W., F. Conti, B. Hille, B. Neumke, and R. Stampfli. 1976. Current noise and the conductance of single Na channels. Pfluegers Arch. 362 (Suppl.):R27.

    Google Scholar 

  62. Siebenga, E., A. W. A. Meyer, and A. A. Verveen. 1973. Membrane shot-noise in electrically depolarized nodes of Ranvier. Pfluegers Arch. 341:87–96.

    Article  CAS  Google Scholar 

  63. Sjolin, V., and W. Grampp. 1975. Membrane noise in slowly adapting stretch receptor neuron of lobster. Nature (London) 257:696–697.

    Article  CAS  Google Scholar 

  64. Anderson, C. R., and C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (London) 235:655–691.

    CAS  Google Scholar 

  65. Anderson, C. R., S. G. Cull-Candy, and R. Miledi. 1976. Gluta- mate and quisqualate noise in voltage-clamped locust muscle fibers. Nature (London) 261:151–153.

    Article  CAS  Google Scholar 

  66. Armstrong, C. M. 1975. Ionic pores, gates, and gating currents. Q. Rev. Biophys. 7:179–210.

    Article  Google Scholar 

  67. Begenisich, T. B., and C. F. Stevens. 1975. How many conductance states do potassium channels have? Biophys. J. 15:843–846.

    Article  PubMed  CAS  Google Scholar 

  68. Colquhoun, D., V. E. Dionne, J. H. Steinbach, and C. F. Stevens. 1975. Conductance of channels opened by acetylcholine-like drugs in muscle end-plate. Nature (London) 253:204–206.

    Article  CAS  Google Scholar 

  69. Neher, E., and H. P. Zingsheim. 1975. The properties of ionic channels measured by noise analysis in thin lipid membranes. Pfluegers Arch. Gesamte Physiol. 351:61–67.

    Article  Google Scholar 

  70. Kolb, H. A., P. Laiiger, and E. Bamberg. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membr. Biol. 20:133–154.

    Article  PubMed  CAS  Google Scholar 

  71. Zingsheim, H. P., and E. Neher. 1974. The equivalence of fluctuation analysis and chemical relation measurements: A study of ion pore formation in thin lipid membranes. Biophys. Chem. 2:197—207.

    Article  PubMed  CAS  Google Scholar 

  72. Sigworth, F.J. 1980. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (London 307:97–129.

    CAS  Google Scholar 

  73. Sigworth, F. J. 1981. Co-variance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys. J. 34:111–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Horowicz, P., Schneider, M.F., Begenisich, T. (1987). Principles of Electrical Methods for Studying Membrane Movements of Ions. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1943-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1943-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42697-1

  • Online ISBN: 978-1-4613-1943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics