Skip to main content

Genes and Membranes

  • Chapter
Membrane Physiology

Abstract

The composition of biological membranes, like that of other cell components, is under genetic control. For each membrane protein, each enzyme involved in the biosynthesis of membrane lipids, and each enzyme that modifies either proteins or lipids (e.g., by adding carbohydrate residues to make glycoproteins or glycolipids), there must be a structural gene whose nucleotide sequence specifies the appropriate amino acid sequence. In addition, there are assumed to be regulatory genes which govern the rates at which the various proteins are made. The purpose of this chapter is to survey the ways in which genetic studies can contribute to our understanding of membrane structure and function. Successive sections of the chapter will discuss genetic methods, the criteria for establishing that differences in membrane properties are genetically determined, the kinds of information that can come from biochemical and physiological studies on membrane mutants, and the information that can be gained by genetic analysis. First, however, it will be important to define the various mutational events that can occur, and the effects of each on the structure or rate of synthesis of the corresponding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doerfler, W. 1981. DNA methylation—A regulatory signal in eu- karyotic gene expression. J. Gen. Virol. 57:1–20.

    Article  PubMed  CAS  Google Scholar 

  2. Razin, A., and J. Friedman. 1981. DNA methylation and its possible biological roles. Prog. Nucleic Acid Res. Mol. Biol. 25:33–52.

    Article  PubMed  CAS  Google Scholar 

  3. Ivarie, R. D., and J. A. Morris. 1982. Induction of prolactin- deficient variants of GH3 rat pituitary tumor cells by eth- ylmethanesulfonate: Reversion by 5-azacytidine, a DNA methylation inhibitor. Proc. Natl. Acad. Sci. USA 79:2967–2970.

    Article  PubMed  CAS  Google Scholar 

  4. Hart, J. D., and D. W. Mount. 1981. Mechanisms of DNA replication and mutagenesis in ultraviolet-irradiated bacteria and mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 25:53–123.

    Article  Google Scholar 

  5. Kimball, R. F. 1980. Relationship between repair processes and mutation induction in bacteria.Basic Life Sci. 15:1–23.

    PubMed  CAS  Google Scholar 

  6. Singer, B., and J. T. Kusmierak. 1982. Chemical mutagenesis. Annu. Rev. Biochem. 52:655–693.

    Article  Google Scholar 

  7. Adelberg, E. A., and A. H. Dantzig. 1979. Selection methods for membrane transport mutants. Banbury Report. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  8. Maniatis, T. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  9. Setlow, J. K., and A. Hollaender, eds. 1980. Genetic Engineering: Principles and Methods. Plenum Press, New York.

    Google Scholar 

  10. Williamson, R. 1981–1983. Genetic Engineering, Volumes 1–4. Academic Press, New York.

    Google Scholar 

  11. Wu, R., ed. 1979. Recombinant DNA. Methods Enzymol. 68.

    Google Scholar 

  12. Harris, J. F., and G. F. Whitmore. 1974. Chinese hamster cells exhibiting a temperature dependent alteration in purine transport. J. Cell. Physiol. 83:43–52.

    Article  PubMed  CAS  Google Scholar 

  13. Robbins, A. R., and R.M. Baker. 1977. (Na/K) ATPase activity in membrane preparation of ouabain-resistant HeLa cells. Biochemistry 16:5163–5168.

    Article  PubMed  CAS  Google Scholar 

  14. Ames, G. F., and J. Lever. 1972. The histidine-binding protein J is a component of histidine transport: Identification of its structural gene hisJ. J. Biol. Chem. 247:4309–4316.

    PubMed  CAS  Google Scholar 

  15. Fox, C. F., J. R. Carter, and E. P. Kennedy. 1967. Genetic control of the membrane protein component of the lactose transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 57:698–705.

    Article  CAS  Google Scholar 

  16. Baker, R. M., D. M. Brunette, R. Mankovitz, L. H. Thompson, G. F. Whitmore, L. Simonovitch, and J. E. Till. 1974. Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1:9–21.

    Article  Google Scholar 

  17. Mankovitz, R., M. Buchwald, and R. M. Baker. 1974. Isolation of ouabain-resistant human diploid fibroblasts. Cell 3:221–226.

    Article  PubMed  CAS  Google Scholar 

  18. Mezger-Freed, L. 1971. Puromycin-resistance in haploid and het- eroploid frog cells: Gene or membrane determined? J. Cell Biol. 51:742–751.

    Article  PubMed  CAS  Google Scholar 

  19. Chasin, L. A. 1973. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J. Cell. Physiol. 82:299–308.

    Article  PubMed  CAS  Google Scholar 

  20. Elsas, L. J., R. E. Hillman, J. H. Patterson, and L. E. Rosenberg. 1970. Renal and intestinal hexose transport in familial glucose- galactose malabsorption. J. Clin. Invest. 49:576–585.

    Article  PubMed  CAS  Google Scholar 

  21. Abrams, M., and J. C. Battle, Jr. 1952. A genetic study in hereditary spherocytosis. Am. J. Hum. Genet. 4:350–355.

    PubMed  CAS  Google Scholar 

  22. Slayman, C. W. 1973. The genetic control of membrane transport. Curr. Top. Membr. Transp. 4:1–174.

    Article  CAS  Google Scholar 

  23. Fox, C. F., and E. P. Kennedy. 1965. Specific labelling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 54:891–899.

    Article  PubMed  CAS  Google Scholar 

  24. Newman, M. J., D. L. Foster, T. H. Wilson, and H. R. Kaback. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256:11804–11808.

    PubMed  CAS  Google Scholar 

  25. Newman, M. J., and T. H. Wilson. 1980. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255:10583–10586.

    PubMed  CAS  Google Scholar 

  26. Foster, D. L., M. L. Garcia, M. J. Newman, L. Patel, and H. R. Kaback. 1982. Lactose: proton symport by purified lac carrier protein. Biochem. 21:5634–5639.

    Article  CAS  Google Scholar 

  27. Hobson, A. C., D. Gho, and B. Müller-Hill. 1977. Isolation, genetic analysis, and characterization ofEscherichia coli mutants with defects in the lacY gene.J. Bacteriol. 131:830–838.

    PubMed  CAS  Google Scholar 

  28. Mieschendahl, M., D. Büchel, H. Bocklage, and B. Müller-Hill. 1981. Mutations in the lacY gene of Escherichia coli define functional organization of lactose permease. Proc. Natl. Acad. Sci. USA 78:7652–7656.

    Article  PubMed  CAS  Google Scholar 

  29. Büchel, D. E., B. Gronenbom, and B. Müller-Hill. 1980. Sequence of the lactose permease gene. Nature (London) 283:541–545.

    Article  Google Scholar 

  30. Higgins, C. F., P. D. Haag, K. Nikaido, F. Ardeshir, G. Garcia, and G. F. Ames. 1982. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. tryphimurium. Nature (London) 298:723–727.

    Article  CAS  Google Scholar 

  31. Shortle, D., D. DiMaio, and D. Nathans. 1981. Directed mutagenesis. Annu. Rev. Genet. 15:265–294.

    Article  PubMed  CAS  Google Scholar 

  32. Ames, G. F. 1964. Uptake of amino acids by Salmonella ty- phimurium. Arch. Biochem. Biophys. 104:1–18.

    Article  PubMed  CAS  Google Scholar 

  33. Ames, G. F., and J. Lever. 1970. Components of histidine transport: Histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. USA 66:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  34. Kustu, S. G., and G. F. Ames. 1974. The histidine binding protein J, a histidine transport component, has two different functional sites. J. Biol. Chem. 249:6976–6983.

    PubMed  CAS  Google Scholar 

  35. Lever, J. E. 1972. Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J. J. Biol. Chem. 247:4317–4326.

    PubMed  CAS  Google Scholar 

  36. Ames, G. F., K. D. Noel, H. Taber, E. N. Spudich, K. Nikaido, J. Afong, and F. Ardeshir. 1977. Fine-structure map of the histidine transport genes in Salmonella typhimurium. J. Bacteriol. 129: 1289–1297.

    PubMed  CAS  Google Scholar 

  37. Higgins, C. F., and G. F. Ames. 1981. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: Complete nucleotide sequences. Proc. Natl. Acad. Sci. USA 78:6038–6042.

    Article  PubMed  CAS  Google Scholar 

  38. Finkelstein, M. S., C. W. Slayman, and E. A. Adelberg. 1977. Tritium suicide selection of mammalian cell mutants defective in the transport of neutral amino acids. Proc. Natl. Acad. Sci. USA 74:4549–4551.

    Article  PubMed  CAS  Google Scholar 

  39. Dantzig, A. H., E. A. Adelberg, and C. W. Slayman. 1979. Properties of two mouse lymphocyte cell lines genetically defective in amino acid transport. J. Biol. Chem. 254:8988–8993.

    PubMed  CAS  Google Scholar 

  40. Adler, J., and W. Epstein. 1974. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. USA 71:2895–2899.

    Article  PubMed  CAS  Google Scholar 

  41. Adler, J., G. L. Hazelbauer, and M. M. Dahl. 1973. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115:824–847.

    CAS  Google Scholar 

  42. Aksamit, R., and D. E. Koshland, Jr. 1972. A ribose binding protein of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 48:1348–1353.

    Article  PubMed  CAS  Google Scholar 

  43. Hazelbauer, G. L., and J. Adler. 1971. Role of the galactose binding protein in chemotaxis ofEscherichia coli toward galactose. Nature New Biol. 230:101–104.

    PubMed  CAS  Google Scholar 

  44. Boos, W. 1974. Pro and contra carrier proteins; sugar transport via the periplasmic galactose-binding protein. Curr. Top. Membr. Transp. 5:51–136.

    CAS  Google Scholar 

  45. Argos, P., W. C. Mahoney, M. A. Hermodson, and M. Hanei. 1981. Structural prediction of sugar-binding proteins functional in chemotaxis and transport. J. Biol. Chem. 256:4357–4361.

    PubMed  CAS  Google Scholar 

  46. Jacob, F., D. Perrin, C. Sanchez, and J. Monod. 1960. L’operon: Groupe de gènes à expression coordonée par un opérateur. C.R. Acad. Sci. 250:1727–1729.

    CAS  Google Scholar 

  47. Beckwith, J. R., and D. Zipser, eds. 1970. The Lactose Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  48. Ephrussi, B. 1972. Hybridization of Somatic Cells. Princeton University Press, Princeton, N.J.

    Google Scholar 

  49. Harris, H. 1970. Cell Fusion. Oxford University Press (Clarendon), London.

    Google Scholar 

  50. Davidson, R. L., and P. S. Gerald. 1977. Induction of mammalian somatic cell hybridization by polyethylene glycol.Methods Cell Biol. 15:325–388.

    Article  PubMed  CAS  Google Scholar 

  51. Stanley, P., V. Caillibot, and L. Siminovitch. 1975. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somat. Cell Genet. 1:3–26.

    Article  PubMed  CAS  Google Scholar 

  52. Stanley, P., S. Narasimhan, L. Siminovitch, and H. Schacter. 1975. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-Af- acetylglucosamine-glycoprotein yV-acetylglucosaminyl transferase activity. Proc. Natl. Acad. Sci. USA 72:3323–3327.

    Article  PubMed  CAS  Google Scholar 

  53. Shows, T. B., and A. Y. Sakaguchi. 1980. Gene transfer and gene mapping in mammalian cells in culture. In Vitro 16:55–76.

    Article  PubMed  CAS  Google Scholar 

  54. Francke, U. 1977. Cytogenetics and somatic cell genetics: The impact of chromosome banding.Birth Defects Orig. Artie. Ser. 13:79–103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Adelberg, E.A., Slayman, C.W. (1987). Genes and Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1943-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1943-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42697-1

  • Online ISBN: 978-1-4613-1943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics