Weak Electrolyte Transport across Biological Membranes

General Principles
  • Michael J. Jackson


The objective of studies on the physiology of cellular membranes is to define the factors that determine the distribution of solutes between a cell and its environment. For the purpose of defining these determinants it is usually found convenient to divide solutes into two groups(1): those that exist as neutral molecules in aqueous solution, the nonelectrolytes; and those that bear a net positive or negative charge, the ions. The determinants for transmembrane movement of these two groups of solutes differ both with respect to the physical forces driving their flows and in terms of the interactions with membrane constituents that determine the rate at which a flow may occur. A third group of solutes may be identified which, from the perspective of their transport through biological membranes, exhibits properties in common with both nonelectrolytes and ions. These solutes are the weak electrolytes. In aqueous solution, weak electrolytes undergo a reversible interaction with a hydrogen ion according to the reaction:
$$\text{MH}^m \rightleftharpoons \text{M}^{m - 1} + \text{H}^\text{ + }$$
where MH m is the associated form of a weak electrolyte, and M m−1 is the conjugate dissociated moiety.


Lipid Bilayer Membrane Permeability Parameter Nonionized Species Unstirred Layer Polar Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ion and non-electrolyte selectivity. Annu. Rev. Physiol. 31:581–646.PubMedCrossRefGoogle Scholar
  2. 2.
    Overton, E. 1900. Studien über die Aufnahme der Anilinfarben durch die lebende Zelle.Jahrb. Wiss. Bot. 34:699–701.Google Scholar
  3. 3.
    Warburg, O. 1910. Über die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Z Physiol. Chem. 66:305–342.CrossRefGoogle Scholar
  4. 4.
    Jacobs, M. H. 1920. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53:457–463.Google Scholar
  5. 5.
    Nierenstein, E. 1920. Über das Wesen der Vitalfarbung. Pfluegers Arch. 179:233–336.CrossRefGoogle Scholar
  6. 6.
    Osterhout, W. J. V. 1925. Is living protoplasm permeable to ions? J. Gen. Physiol. 8:131–146.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith, H. W. 1925. The action of acids on cell division with reference to the permeability to anions.Am. J. Physiol. 72:347–371.Google Scholar
  8. 8.
    Hober, R., and G. Pupilli. 1931. Neue Versuche über die Aufnahme von Farbstoffen durch die voten Blutkorchen. Pfluegers Arch. 226:586–599.Google Scholar
  9. 9.
    Collander, R., and H. Barlund. 1933. Permeabitasstudien an Chara ceracertophylla. II. Die permeabilitat für Nichtelektrolyte. Acta Bot. Fenn. 11:5–114.Google Scholar
  10. 10.
    Teorell, T. 1933. Untersuchungen iiber die Magensaftkeretion. Skand. Arch. Physiol. 66:225–317.Google Scholar
  11. 11.
    Waddell, W. J., and T. C. Butler. 1959. Calculation of intracellular from the distribution of 5,5-dimethly-2,4-oxazolidinedione (DMO): Application to skeletal muscle of the dog. J. Clin. Invest. 38:720–729.PubMedCrossRefGoogle Scholar
  12. 12.
    Boron, W. 1985. pH regulation in cells. In: Physiology of Membrane Disorders, 2nd ed. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York.Google Scholar
  13. 13.
    Jacobs, M. H. 1940. Some aspects of cell permeability to weak electrolytes. Cold Spring Harbor Symp. Quant. Biol. 8:30–39.Google Scholar
  14. 14.
    Brodie, B. B., and C. A. M. Hogben. 1957. Some physico-chemical factors in drug action. J. Pharm. Pharmacol. (London) 9:345–380.Google Scholar
  15. 15.
    Orloff, J., and R. W. Berliner. 1956. The mechanism of the excretion of ammonia in the dog. J. Clin. Invest. 35:223–235.PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson, M. J., and V. H. Cohn. 1977. Determinants of xenobiotic transport at biological barriers. In: Handbook of Physiology, Section 9. D. H. K. Lee, H. L. Falk, and S. D. Murphy, eds. American Physiological Society, Washington, D.C. pp. 397–418.Google Scholar
  17. 17.
    Jackson, M.J. 1981. Absorption and secretion of weak electrolytes in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract. L. R. Johnson, J. Christiansen, M. I. Grossman, E. D. Jacobson, and S. G. Schultz, eds. Raven Press, New York. pp. 1243–1270.Google Scholar
  18. 18.
    Jackson, M. J., C.-Y. Tai, and J. E. Steane, 1981. Weak electrolyte permeation in alimentary epithelia. Am. J. Physiol. 3:G191-G198.Google Scholar
  19. 19.
    Maughlin, S. G. A., and J. P. Dilger. 1980. Transport of protons across membranes by weak acids. Physiol. Rev. 60:825–863.Google Scholar
  20. 20.
    Butler, J. N. 1964. Ionic Equilibrium—A Mathematical Approach. Addison-Wesley, Reading, Mass.Google Scholar
  21. 21.
    Wartiovaara, V., and R Collander. 1960.Permeabilitatstheorien: Handbuch der Protoplasmaforschung, Volume II. M. Albert, ed. Springer-Verlag, Vienna, pp. 1–98.Google Scholar
  22. 22.
    Leo, A., C. Hansch, and D. Elkins. 1971. Partition coefficients and their uses. Chem. Rev. 71:525–616.CrossRefGoogle Scholar
  23. 23.
    Davis, S. C., T. Higuchi, and J. H. Rytting. 1974. Determinants of thermodynamics of functional groups in solutions of drug molecules. Adv. Pharm. Sci. 4:73–261.PubMedGoogle Scholar
  24. 24.
    Poijarvi, L. A. P. 1928. Uber die Basenpermeabilitat pflanzlicher Zellen. Actot. Fenn. 4:1–102.Google Scholar
  25. 25.
    Jackson, M. J., A. M. Williamson, W. A. Dombrowski, and D. E. Garner. 1978. Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface. J. Gen. Physiol. 71:301–327.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaufman, J. J., N. M. Semo, and W. S. Koski. 1975. Micro- electrometric titration measurement of the a’s and partition and drug distribution coefficients of narcotics and narcotic antagonists and their and temperature dependence. J. Med. Chem. 18:647–665.PubMedCrossRefGoogle Scholar
  27. 27.
    Davis, S. S. 1973. Determination of the thermodynamics of hy- droxyl and carboxyl groups in solutions of drug molecules. J. Pharm. Pharmacol. 25:982–992.PubMedCrossRefGoogle Scholar
  28. 28.
    Sallee, V. L., and J. M. Dietschy. 1973. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J. Lipid Res. 14:475–484.PubMedGoogle Scholar
  29. 29.
    Sallee, V. L. 1978. Fatty acid and alcohol partitioning with intestinal brush border and erythrocyte membranes. J. Membr. Biol. 43:187–201.PubMedCrossRefGoogle Scholar
  30. 30.
    Collander, R. 1973. The permeability of plant protoplasts to non- electrolytes. Trans. Faraday Soc. 33:985–990.CrossRefGoogle Scholar
  31. 31.
    Gutknecht, J., J. J. Graves, and DC. Tosteson. 1978. Electrically silent anion transport through lipid bilayer membranes containing a long-chain secondary amine. J. Gen. Physiol. 71:269–284.PubMedCrossRefGoogle Scholar
  32. 32.
    Smulders, A. P., and E. M. Wright. 1971. The magnitude of non- electrolyte selectivity in the gall bladder epithelium. J. Membr. Biol. 5:297–318.CrossRefGoogle Scholar
  33. 33.
    E. M. Wright, and R. J. Pietras. 1974. Routes of nonelectrolyte permeation across epithelial membranes. J. Membr. Biol. 17:293–312.PubMedCrossRefGoogle Scholar
  34. 34.
    Gutknecht, J., and D. C. Tosteson. 1971. Diffusion of weak acids across lipid bilayer membranes: Effects of chemical reactions in the unstirred layers. Science 182:1258–1261.CrossRefGoogle Scholar
  35. 35.
    Gutknecht, J., and A. Walter. 1980. Transport of auxin (indo- leacetic acid) through lipid bilayer membranes. J. Membr. Biol. 56:65–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Walter, A., D. Hastings, and J. Gutknecht. 1982. Weak acid permeability through lipid bilayer membranes: Role of chemical reactions in the unstirred layer. J. Gen. Physiol. 79:917–933.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolosin, J. M., and H. Ginsberg. 1975. The permeation of organic acids through lecithin bilayers: Resemblance to diffusion in polymers. Biochim. Biophys. Acta 389:20–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Keifer, D. W., and A. Roos. 1980. Membrane permeation to molecular and ionic forms of DMO in barnacle muscle. Am. J. Physiol. 240:C73-C79.Google Scholar
  39. 39.
    Roos, A., and W. F. Boron. 1981. Intracellular. Physiol. Rev. 61:296–434.PubMedGoogle Scholar
  40. 40.
    Jackson, M. J., and A. A. Airall. 1978. Transport of heterocyclic acids across rat small intestine in vitro. J. Membr. Biol. 38:255–269.CrossRefGoogle Scholar
  41. 41.
    Tai, C.-Y., and M. J. Jackson. 1982. Transport of weak bases across rat gastric mucosa in vivo and in vitro. J. Pharmacol. Exp. Ther. 222:372–378.PubMedGoogle Scholar
  42. 42.
    Pauling, L. 1960. The Nature of the Chemical Bond. Cornell University Press, Ithaca, N.Y.Google Scholar
  43. 43.
    Tai, C.-Y., and M. J. Jackson. 1981. Weak-acid transport in the small intestine: Discrimination in the lamina propria. J. Membr. Biol. 59:35–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Wright, E. M., and J. M. Diamond. 1968. Effect of and polyvalent cations on the selective permeability of the gall bladder epithelium to monovalent ions. Biochim. Biophys Acta 163:57–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Moreno, J. H., and J. M. Diamond. 1974. Discrimination of monovalent inorganic cations by ’tight’ junctions in gallbladder epithelium. J. Membr. Biol. 15:277–318.PubMedCrossRefGoogle Scholar
  46. 46.
    Moreno, J. H., and J. M. Diamond. 1975. Nitrogenous cations as probes of permeation channels. J. Membr. Biol. 21:197–259.CrossRefGoogle Scholar
  47. 47.
    Moreno, J. H. 1975. Blockage of gallbladder tight junction cation selective channels by 2,4,6-triaminopyridinium (TAP). J. Gen. Physiol. 66:97–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Wright, E. M., and J. M. Diamond. 1977. Anion selectivity in biological systems. Physiol. Rev. 57:109–156.PubMedGoogle Scholar
  49. 49.
    Frizzell, R. A., and S. G. Schultz. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum: Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59:318–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Munck, B.C., and S. C. Schultz. 1974. Properties of the passive conductance pathway across in vitro rat jejunum. J. Membr. Biol. 16:163–174.PubMedCrossRefGoogle Scholar
  51. 51.
    Westergaard, H., and J. M. Dietschy. 1974. Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J. Clin. Invest. 54:718–732.PubMedCrossRefGoogle Scholar
  52. 52.
    Lucas, M. L., W. Schneider, F. J. Haberich, and J. A. Blair. 1975. Direct measurement by -microelectrode of the microclimate in rat proximal jejunum. Proc. R. Soc. London Ser. B 192:39–48.CrossRefGoogle Scholar
  53. 53.
    Hartley, G. S., and J. W. Roe. 1940. Ionic concentrations at interfaces. Trans. Faraday Soc. 36:101–109.CrossRefGoogle Scholar
  54. 54.
    Diamond, J. M. 1966. A rapid method for determining voltage- concentration relation across membranes. J. Physiol. (London) 183:83–100.Google Scholar
  55. 55.
    Schafer, J. A., and T. E. Andreoli. 1972. Cellular constraints to diffusion: The flows in isolated mammalian collecting tubules. J. Clin. Invest. 51:1264–1278.PubMedCrossRefGoogle Scholar
  56. 56.
    Lukie, B. E., H. Westergaard, and J. M. Dietschy. 1974. Validation of a chamber that allows measurement of both tissue uptake rates and unstirred layer thickness in the intestine under conditions of controlled stirring. Gastroenterology 67:652–661.PubMedGoogle Scholar
  57. 57.
    Wilke, C. R., and P. Chang. 1955. Correlation of diffusion coefficients in dilute solution. Am. Inst. Chem. Eng. J. 1:264–270.Google Scholar
  58. 58.
    Ingraham, R. C., and M. B. Visscher. 1935. Studies on the elimination of dyes in the gastric and pancreatic secretions, and inferences therefrom concerning the mechanisms of secretion of acid and base. J. Gen. Physiol. 18:695–716.PubMedCrossRefGoogle Scholar
  59. 59.
    Ruifrok, P. G. 1982. Transport of organic ions through lipid bilayers: The barbiturates. N.-S. Arch. Pharmacol. 319:185–188.CrossRefGoogle Scholar
  60. 60.
    Scarpa, A. 1979. Transport across mitochondrial membranes. In: Membrane Transport in Biology, Volume II. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 263–356.Google Scholar
  61. 61.
    Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. 1982. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 12:F456-F462.Google Scholar
  62. 62.
    Wright, S. H., I. Kippen, and E. M. Wright. 1982. Stoichiometry of Na + -succinate cotransport in renal brush border membranes. J. Biol. Chem. 257:1773–1778.PubMedGoogle Scholar
  63. 63.
    Knoth, J., M. Zallakian, and D. Njus. 1982. Mechanism of proton- linked monoamine transport in chromaffin granule ghosts. Fed. Proc. 41:2742–2745.PubMedGoogle Scholar
  64. 64.
    Njus, D., and G. K. Radda. 1978. Bioenergetic processes in chromaffin granules: A new perspective on some old problems. Bio- chim. Biophys. Acta 463:219–244.Google Scholar
  65. 65.
    Johnson, R. G., and A. Scarpa. 1979. Proton-motive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254:3750–3760.PubMedGoogle Scholar
  66. 66.
    Johnson, R. G., S. Carty, and A. Scarpa. 1982. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient. Fed. Proc. 41:2746–2754.PubMedGoogle Scholar
  67. 67.
    Milne, M. D., B. H. Scribner, and M. A. Crawford. 1958. Non– ionic diffusion and the excretion of weak acids and bases. Am. J. Med. 24:709–729.PubMedCrossRefGoogle Scholar
  68. 68.
    Schanker, L. S. 1968. Secretion of organic compounds in bile. In: Handbook of Physiology, Section 6, Volume V. C.F. Code, ed. American Physiological Society, Washington, D.C. pp. 2437–2450.Google Scholar
  69. 69.
    Weiner, I. M. 1973. Transport of weak acids and bases. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 521–554.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Michael J. Jackson
    • 1
  1. 1.Department of PhysiologyGeorge Washington University School of MedicineUSA

Personalised recommendations