Skip to main content

Anion Transport in Erythrocytes

  • Chapter
Membrane Physiology

Abstract

Twenty years ago a book such as this would probably not have included a chapter on anion transport. At that time, there was little interest in anions, since it was felt that most important physiological processes involved transport of cations, and that anions simply went along with cations to maintain electroneutrality. Most anion transport was felt to involve passive diffusion and, with the exception of special cases such as the Cl/HCO 3 exchanges in the red cell and kidney, to be of little physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANS:

1-anilino-8-naphthalenesulfonate

APMB:

2-(4′-aminophenyl)-6-methylbenzenethiazole-3′,7-disulfonate

BADS:

4-benzamido-4′-aminostilbene-2,2′-disulfonate

BIDS:

4-benzamido- 4′-isothiocyanostilbene-2,2′-disulfonate

CNBr:

cyanogen bromide

DASA:

diazosulfanilic acid

DBDS:

4,4′-dibenzamido-stilbene-2,2′-disulfonate

DIDS:

4,4′-diisothiocyano-stilbene-2,2′-disulfonate

DNDS:

4,4′-dinitro-stilbene-2,2′-disulfonate

EAC:

1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide iodide

EM:

eosin-5-maleimide

FDNB:

1-fluoro-2,4-dinitrobenzene

H2DIDS:

4,4′-diisothio-cyano-1,2-diphenylethane-2,2′-disulfonate

IBS:

p-isothiocyanoben- zenesulfonate

ID50 :

concentration of inhibitor which causes 50% inhibition

K:

molecular weight in kilodaltons

Kd:

dissociation constant: concentration of an agent which half-saturates a binding site

NAP-taurine:

N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate

NDS-TEMPO:

N-4-(2,2,6,6-tetramethyl-1-oxyl)piperidinyl-N′-4-(4′-nitro-2,2′-stilbenedisulfonic acid) thiourea

NIP-taurine:

N-(4-isothio-cyano-2-nitrophenyl)-2-aminoethylsulfonate

NTCB:

2-nitro-5-thiocy- anobenzoic acid

PDP:

pyridoxal phosphate

PG:

phenylglyoxal

PITC:

phenylisothiocyanate

PMA:

phorbol-12-myristate-13-acetate

SITS:

4-acetamido-4′-isothiocyano-stilbene-2,2′-disulfonate

TNBS:

2,4,6-trinitrobenzenesulfonate

References

  1. Hunter, M. J. 1971. A quantitative estimate of the non-exchange- restricted chloride permeability of the human red cell. J. Physiol. (London) 218:49P-50P.

    CAS  Google Scholar 

  2. Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15:207–226.

    Article  PubMed  CAS  Google Scholar 

  3. Passow, H., H. Fasold, L. Zaki, B. Schuhmann, and S. Lepke. 1975. Membrane proteins and anion exchange in human erythrocytes. In: Biomembranes: Structure and Function. G. Gardos and I. Szasz, eds. North-Holland, Amsterdam, pp. 197–214.

    Google Scholar 

  4. Haspel, H. C., R. E. Corin, and M. Sonnenberg. 1982. Gossypol, an oral male contraceptive: Effects on human erythrocyte membrane function. Fed. Proc. 41:671.

    Google Scholar 

  5. Deuticke, B. 1982. Monocarboxylate transport in erythrocytes. J. Membr. Biol. 70:89–103.

    Article  PubMed  CAS  Google Scholar 

  6. Murer, H. 1982. Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev. Physiol. Biochem. Pharmacol. 96:1–51.

    Article  Google Scholar 

  7. Zadunaisky, J. A., ed. 1982. Chloride Transport in Biological Membranes. Academic Press, New York.

    Google Scholar 

  8. Macara, I. G., and L. C. Cantley. 1983. The structure and function of band 3. In: Cell Membranes: Methods and Reviews. E. Elson, W. Frazier, and L. Glaser, eds. Plenum Press, New York, pp. 41–87.

    Google Scholar 

  9. Wieth, J. O., and J. Brahm. 1985. Cellular anion transport. In: The Kidney: Normal and Abnormal Function. D. W. Seldin and G. Giebisch, eds. Raven Press, New York, in press.

    Google Scholar 

  10. Keynes, R. D., and J. C. Ellory, eds. 1982. The Binding and Transport of Anions in Living Tissues. Philos. Trans. R. Soc. London Ser. B 299:365–607.

    Google Scholar 

  11. Lowe, A. G., and A. Lambert. 1983. Chloride-bicarbonate exchange and related transport processes. Biochim. Biophys. Acta 694:353–374.

    Google Scholar 

  12. Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  13. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108:37–77.

    CAS  Google Scholar 

  14. Wieth, J. O., O. S. Andersen, J. Brahm, P. J. Bjerrum, and C. L. Borders, Jr. 1982. Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites. Philos. Trans. R. Soc. London Ser. B 299:383–399.

    Article  CAS  Google Scholar 

  15. Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70:283–306.

    Article  PubMed  CAS  Google Scholar 

  16. Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12:249–363.

    CAS  Google Scholar 

  17. Fairbanks, G. L., T. L. Steck, and D. F. H. Wallach. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617.

    Article  PubMed  CAS  Google Scholar 

  18. Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. (London) 268:35–49.

    CAS  Google Scholar 

  19. Knauf, P. A., G. F. Fuhrmann, S. Rothstein, and A. Rothstein. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69:363–386.

    Article  PubMed  CAS  Google Scholar 

  20. Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67:223–234.

    Article  PubMed  CAS  Google Scholar 

  21. Patlak, C. S. 1957. Contributions to the theory of active transport. II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19:209–235.

    Article  Google Scholar 

  22. Gunn, R. B. 1978. Considerations of the titratable carrier model for sulfate transport in human red blood cells. In: Membrane Transport Processes. J. F. Hoffman, ed. Raven Press, New York, pp. 61–77.

    Google Scholar 

  23. Cass, A., and M. Dalmark. 1973. Equilibrium dialysis of ions in nystatin-treated red cells. Nature New Biol. 244:47–49.

    Article  PubMed  CAS  Google Scholar 

  24. Schnell, K. F., E. Besl, and A. Manz. 1978. Asymmetry of the chloride transport system in human erythrocyte ghosts. Pfluegers Arch. Gesamte Physiol. 375:87–95.

    Article  CAS  Google Scholar 

  25. Schnell, K. F. 1979. The anion transport system of the red blood cell. In: Proceedings of the Fifth Winter School on Biophysics of Membrane Transport. Agricultural University of Wroclaw, Wroclaw, Poland. Part II, pp. 215–252.

    Google Scholar 

  26. Gunn, R. B., and O. Fröhlich. 1979. Asymmetry in the mechanism for anion exchange in human red blood cell membranes: Evidence for reciprocating sites that react with one transported anion at a time. J. Gen. Physiol. 74:351–374.

    Article  PubMed  CAS  Google Scholar 

  27. Knauf, P. A., S. Ship, W. Breuer, L. McCulloch, and A. Rothstein. 1978. Asymmetry of the red cell anion exchange system: Different mechanisms of reversible inhibition by N-(4-azido-2- nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J. Gen. Physiol. 72:607–630.

    Article  PubMed  CAS  Google Scholar 

  28. Wieth, J. O., and P. J. Bjerrum. 1982. Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79:253–282.

    Article  PubMed  CAS  Google Scholar 

  29. Knauf, P., and M. Ramjeesingh. 1982. Techniques for studying the anion transporting protein. In: Red Cell Membranes. J. C. Ellory, ed. Academic Press, New York. pp. 275–300.

    Google Scholar 

  30. Fröhlich, O. 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Membr. Biol. 65:111–123.

    Article  PubMed  Google Scholar 

  31. Barzilay, M., and Z. I. Cabantchik. 1979. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr. Biochem. 2:255–281.

    Article  PubMed  CAS  Google Scholar 

  32. Schnell, K. F., W. Elbe, J. Kasbauer, and E. Kaufmann. 1983. Electron spin resonance studies on the inorganic anion transport system of the human red blood cell: Binding of the di- sulfonatostilbene spin label, NDS-TEMPO, and inhibition of anion transport.Biochim. Biophys. Acta 732:266–275.

    Article  PubMed  CAS  Google Scholar 

  33. Passow, H., L. Kampmann, H. Fasold, M. Jennings, and S. Lepke. 1980. Mediation of anion transport across the red cell membrane by means of conformational changes in the band 3 protein. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 345–367.

    Google Scholar 

  34. Shami, Y., A. Rothstein, and P. A. Knauf. 1978. Identification of the CI transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim. Biophys. Acta 508:357–363.

    Article  PubMed  CAS  Google Scholar 

  35. Halestrap, A. P. 1976. Transport of pyruvate and lactate into human erythrocytes: Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem. J. 156:193–207.

    PubMed  CAS  Google Scholar 

  36. Cousin, J. L., and Motais, R. 1979. Inhibition of anion permeability by amphiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein. J. Membr. Biol. 46:125–153.

    Article  PubMed  CAS  Google Scholar 

  37. Gunn, R. B., and J. A. Cooper, Jr. 1975. Effect of local anesthetics on chloride transport in erythrocytes. J. Membr. Biol. 25:311–326.

    Article  PubMed  Google Scholar 

  38. Fröhlich, O., and R. B. Gunn. 1982. Mutual interactions of reversible inhibitors on the red cell anion transporter. Biophys. J. 37:213a.

    Article  Google Scholar 

  39. Macara, I. G., and L. C. Cantley. 1981. The mechanism of anion exchange across the red cell membrane by band 3: Interactions between stilbene disulfonates and NAP-taurine binding sites. Biochemistry 20:5695–5701.

    Article  PubMed  CAS  Google Scholar 

  40. Cabantchik, Z., P. Knauf, T. Ostwald, H. Markus, L. Davidson, W. Breuer, and A. Rothstein. 1976. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell. Biochim. Biophys. Acta 455:526–537.

    Article  PubMed  CAS  Google Scholar 

  41. Kempf, C., C. Brock, H. Sigrist, M. J. A. Tanner, and P. Zahler. 1981. Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II. Topology of phenylisothiocyanate binding sites and influence of P-sulfophenylisothiocyanate on phenylisothiocyanate modification. Biochim. Biophys. Acta 641:88–98.

    Article  PubMed  CAS  Google Scholar 

  42. Nigg, E. A., C. Bron, M. Girardet, and R. J. Cherry. 1980. Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with anti- body-induced cross-linking. Biochemistry 19:1887–1893.

    Article  PubMed  CAS  Google Scholar 

  43. Verkman, A. S., J. A. Dix, and A. K. Solomon. 1983. Anion transport inhibitor binding to band 3 in red blood cell membranes. J. Gen. Physiol. 81:421–449.

    Article  PubMed  CAS  Google Scholar 

  44. Macara, I. G., S. Kuo, and L. C. Cantley. 1983. Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J. Biol. Chem. 258:1785–1792.

    PubMed  CAS  Google Scholar 

  45. Macara, I. G., and L. C. Cantley. 1981. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry 20:5095–5105.

    Article  PubMed  CAS  Google Scholar 

  46. Rao, A., P. Martin, R. A. F. Reithmeier, and L. C. Cantley. 1979. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18:4505–4516.

    Article  PubMed  CAS  Google Scholar 

  47. Nigg, E., M. Kessler, and R. J. Cherry. 1979. Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements: Inhibition of anion transport and photo-ox- idative inactivation of acetylcholinesterase. Biochim. Biophys. Acta 550:328–340.

    Article  PubMed  CAS  Google Scholar 

  48. Rothstein, A., P. A. Knauf, and Z. I. Cabantchik. 1977. NAP- taurine, a photoaffinity probe for the anion transport system of the red blood cell. In: Biochemistry of Membrane Transport. G. Semenza and E. Carafoli, eds. Springer-Verlag, Berlin, pp. 316–327.

    Chapter  Google Scholar 

  49. Funder, J., and Wieth, J. 1976. Chloride transport in human erythrocytes and ghosts: A quantitative comparison. J. Physiol. (London) 262:679–698.

    CAS  Google Scholar 

  50. Gunn, R. B. 1972. A titratable carrier model for both mono- and di-valent anion transport in human red blood cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, eds. Munksgaard, Copenhagen, pp. 823–827.

    Google Scholar 

  51. Lepke, S., and H. Passow. 1971. The permeability of the human red blood cell to sulfate ions. J. Membr. Biol. 6:158–182.

    Article  CAS  Google Scholar 

  52. Schnell, K. F., S. Gerhardt, and A. Schoppe-Fredenburg. 1977. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J. Membr. Biol. 30:319–350.

    PubMed  CAS  Google Scholar 

  53. Ku, C.P., M.L. Jennings, and H. Passow. 1979. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red blood cell membrane. Biochim. Biophys. Acta 553:132–141.

    Article  PubMed  CAS  Google Scholar 

  54. Jennings, M. 1976. Proton fluxes associated with erythrocyte membrane anion exchange. J. Membr. Biol. 28:187–205.

    Article  PubMed  CAS  Google Scholar 

  55. Milanick, M. A., and R. B. Gunn. 1982. Proton-sulfate co-trans- port: Mechanism of H + and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79:87–113.

    Article  PubMed  CAS  Google Scholar 

  56. Milanick, M. A., and R. B. Gunn. 1982. Interactions between external protons and the anion transporter of human erythrocytes. Biophys. J. 37:213a.

    Google Scholar 

  57. Dalmark, M. 1975. Chloride transport in human red cells. J. Physiol. (London ) 250:39–64.

    CAS  Google Scholar 

  58. Wieth, J. O., J. Brahm, and J. Funder. 1980. Transport and interactions of anions and protons in the red blood cell membrane. Ann. N.Y. Acad. Sci. 341:394–418.

    Article  PubMed  CAS  Google Scholar 

  59. Milanick, M. A., and R. B. Gunn. 1984. Proton-sulfate co-trans- port: External proton activation of sulfate influx into human red blood cells. Am. J. Physiol. 247 (Cell Physiol. 16):C247-C259.

    PubMed  CAS  Google Scholar 

  60. Jennings, M. L. 1978. Characteristics of C02-independent pH equilibration in human red blood cells. J. Membr. Biol. 40:365–391.

    Article  PubMed  CAS  Google Scholar 

  61. Legrum, B., H. Fasold, and H. Passow. 1980. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane.Hoppe-Seyler’s Z. Physiol. Chem. 361:1573–1590.

    Article  PubMed  CAS  Google Scholar 

  62. Lepke, S., and H. Passow. 1982. Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride. J. Physiol. (London ) 328:27–48.

    CAS  Google Scholar 

  63. Gunn, R. B., and O. Fröhlich. 1980. The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. N.Y. Acad. Sei. 341:384–393.

    Article  CAS  Google Scholar 

  64. Gunn, R., J. Wieth, and D. Tosteson. 1975. Some effects of low pH on chloride exchange in human red blood cells. J. Gen. Physiol. 65:731–749.

    Article  PubMed  CAS  Google Scholar 

  65. Bjerrum, P. J., J. Tranum-Jensen, and K. Mollgard. 1980. Morphology of erythrocyte membranes and their transport function following aggregation of membrane proteins. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 51–67.

    Google Scholar 

  66. Gunn, R. B. 1973. A titratable carrier for monovalent and divalent inorganic anions in red blood cells. In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart, pp. 77–79.

    Google Scholar 

  67. Wieth, J. O., P. J. Bjerrum, and C. L. Borders, Jr. 1982. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 79:283–312.

    Article  PubMed  CAS  Google Scholar 

  68. Bjerrum, P. J., J. O. Wieth, and C. L. Borders, Jr. 1983. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. J. Gen. Physiol. 81:453–484.

    Article  PubMed  CAS  Google Scholar 

  69. Zaki, L. 1981. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem. Biophys. Res. Commun. 99:243–251.

    Article  PubMed  CAS  Google Scholar 

  70. Sachs, J. R. 1977. Kinetic evaluation of the Na-K pump reaction mechanism. J. Physiol. (London) 273:489–514.

    CAS  Google Scholar 

  71. Cleland, W. W. 1963. The kinetics of enzyme-catalysed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67:104–137.

    Article  PubMed  CAS  Google Scholar 

  72. Jennings, M. L. 1980. Apparent “recruitment” of SO4 transport sites by the CI gradient across the human erythrocyte membrane. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 450–463.

    Google Scholar 

  73. Rothstein, A., Z. I. Cabantchik, and P. Knauf. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins. Fed. Proc. 35:3–10.

    PubMed  CAS  Google Scholar 

  74. Cabantchik, Z. I., M. Baishin, W. Breuer, and A. Rothstein. 1975. Pyridoxal phosphate: An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J. Biol. Chem. 250:5130–5136.

    PubMed  CAS  Google Scholar 

  75. Nari, H., N. Hamasaki, and S. Minakami. 1983. Affinity labeling of erythrocyte band 3 protein with pyridoxal-5-phosphate. J. Biol. Chem. 258:5985–5989.

    Google Scholar 

  76. Passow, H., H. Fasold, E. M. Gartner, B. Legrum, W. Ruffing, and L. Zaki. 1980. Anion transport across the red blood cell membrane and the conformation of the protein in band 3.Ann. N.Y. Acad. Sei. 341:361–383.

    Article  CAS  Google Scholar 

  77. Passow, H., and L. Zaki. 1978. Studies on the molecular mechanism of anion transport across the red blood cell membrane. In: Molecular Specialization and Symmetry in Membrane Function. A. K. Solomon and M. Kamovsky, eds. Harvard University Press, Cambridge, Mass. pp. 229–250.

    Google Scholar 

  78. Grinstein, S., L. McCulloch, and A. Rothstein. 1979. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells: Evidence for mobile transport sites. J. Gen. Physiol. 73:493–514.

    Article  PubMed  CAS  Google Scholar 

  79. Knauf, P. A., T. Tarshis, S. Grinstein, and W. Furuya. 1980. Spontaneous and induced asymmetry of the human erythrocyte anion exchange system as detected by chemical probes. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 389–403.

    Google Scholar 

  80. Furuya, W., T. Tarshis, F.-Y. Law, and P. A. Knauf. 1984. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS: Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83:657–681.

    Article  PubMed  CAS  Google Scholar 

  81. Jennings, M. L. 1982. Stoichiometry of a half-turnover of band 3, the chloride-transport protein of human erythrocytes. J. Gen. Physiol. 79:169–185.

    Article  PubMed  CAS  Google Scholar 

  82. Salhany, J. M., and E. D. Gaines. 1981. Steady state kinetics of erythrocyte anion exchange: Evidence for site-site interactions. J. Biol. Chem. 256:11080–11085.

    PubMed  CAS  Google Scholar 

  83. Schnell, K. F., E. Besl, and R. von der Mosel. 1981. Phosphate transport in human RBC: Concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J. Membr. Biol. 61:173–192.

    Article  PubMed  CAS  Google Scholar 

  84. Salhany, J. M., and P. B. Rauenbuehler. 1983. Kinetics and mechanisms of erythrocyte anion exchange. J. Biol. Chem. 258: 245–249.

    PubMed  CAS  Google Scholar 

  85. Segel, I. H. 1975. Enzyme Kinetics. Wiley, New York. p. 274 ff.

    Google Scholar 

  86. Knauf, P. A., F.-Y. Law, T. Tarshis, and W. Furuya. 1984. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system: Evidence for intrinsic asymmetry. J. Gen. Physiol. 83:683–701.

    Article  PubMed  CAS  Google Scholar 

  87. Knauf, P. A. 1982. Kinetic asymmetry of the red cell anion exchange system. In: Membranes and Transport, Volume 2. A. N. Martonsoi, ed. Plenum Press, New York. pp. 441–449.

    Google Scholar 

  88. Knauf, P. A., N. Mann, and F.-Y. Law. 1981. Niflumic acid senses the conformation of the transport site of the human red cell anion exchange system. Biophys. J. 33:49a.

    Google Scholar 

  89. Knauf, P. A., and N. Mann. 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol. 83:703–725.

    Article  PubMed  CAS  Google Scholar 

  90. Knauf, P. A., and N. Mann. 1982. Use of niflumic acid (NA) to probe the asymmetry of the human erythrocyte anion exchange system. Fed. Proc. 41:975.

    Google Scholar 

  91. Eidelman, O., and Z. I. Cabantchik. 1983. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate. II. Kinetic properties of NBD- taurine transfer in asymmetric conditions. J. Membr. Biol. 71:149–161.

    Article  PubMed  CAS  Google Scholar 

  92. Gunn, R. B., and O. Frohlich. 1982. Arguments in support of a single transport site on each anion transporter in human red cells. In: Chloride Transport in Biological Membranes. J. Zadunaisky, ed. Academic Press, New York. pp. 33–59.

    Google Scholar 

  93. Rothstein, A., and M. Ramjeesingh. 1982. The red cell band 3 protein: Its role in anion transport. Philos. Trans. R. Soc. London Ser. B 299:497–507.

    Article  CAS  Google Scholar 

  94. Steck, T. L. 1978. The band 3 protein of the human red cell membrane: A review.J. Supramol. Struct. 8:311–324.

    Article  PubMed  CAS  Google Scholar 

  95. Steck, T. L., B. Ramos, and E. Strapazon. 1976. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15:1154–1161.

    Article  CAS  Google Scholar 

  96. Grinstein, S., S. Ship, and A. Rothstein. 1978. Anion transport in relation to proteolytic dissection of band 3 protein. Biochim. Biophys. Acta 507:294–304.

    Article  PubMed  CAS  Google Scholar 

  97. Williams, D. G., R. E. Jenkins, and M. J. A. Tanner. 1979. Structure of the anion-transport protein of the human erythrocyte membrane. Biochem. J. 181:477–493.

    PubMed  CAS  Google Scholar 

  98. Yu, J., and T. L. Steck. 1975. Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J. Biol. Chem. 250:9176–9184.

    CAS  Google Scholar 

  99. Strapazon, E., and T. L. Steck. 1977. Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry 16:2966–2971.

    Article  PubMed  CAS  Google Scholar 

  100. Karadsheh, N. S., and K. Uyeda. 1977. Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes. J. Biol. Chem. 252:7418–7420.

    PubMed  CAS  Google Scholar 

  101. Salhany, J. M., and K. C. Gaines. 1981. Connections between cytoplasmic proteins and the erythrocyte membrane. Trends Biochem. Sci. 6:13–15.

    Article  CAS  Google Scholar 

  102. Salhany, J. M., K. A. Cordes, and E. D. Gaines. 1980. Light- scattering measurements of hemoglobin binding to the erythrocyte membrane: Evidence for transmembrane effects related to a di- sulfonic stilbene binding to band 3. Biochemistry 19:1447–1454.

    Article  PubMed  CAS  Google Scholar 

  103. Sayare, M., and M. Fikiet. 1981. Cross-linking of hemoglobin to the cytoplasmic surface of human erythrocyte membranes. J. Biol. Chem. 256:13152–13158.

    PubMed  CAS  Google Scholar 

  104. Eisinger, J., J. Flores, and J. M. Salhany. 1982. Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 79:408–412.

    Article  PubMed  CAS  Google Scholar 

  105. Kirschner-Zilber, I., and N. Shaklai. 1982. The specificity of hemoglobin for band 3 membrane sites. Biochem. Int. 3:309–316.

    Google Scholar 

  106. Cassoly, R. 1983. Quantitative analysis of the association of human hemoglobin with the cytoplasmic fragment of band 3 protein. J. Biol. Chem. 258:3859–3864.

    PubMed  CAS  Google Scholar 

  107. Bennett, V., and P. J. Stenbuck. 1980. Association between an- kyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J. Biol. Chem. 255:6424–6432.

    PubMed  CAS  Google Scholar 

  108. Bennett, V. 1982. Isolation of an ankyrin-band 3 oligomer from human erythrocyte membrane. Biochim. Biophys. Acta 689:475–484.

    Article  PubMed  CAS  Google Scholar 

  109. Golan, D. E., and W. Veatch. 1980. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence pho- tobleaching recovery: Evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A. 77:2537–2541.

    Article  PubMed  CAS  Google Scholar 

  110. Nigg, E. A., and R. J. Cherry. 1980. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements. Proc. Natl. Acad. Sci. U.S.A. 77:4702–4706.

    Article  PubMed  CAS  Google Scholar 

  111. Sakaki, T., A. Tsuji, C.-H. Chang, and S. Ohnishi. 1982. Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins.Biochemistry 21:2306–2312.

    Article  Google Scholar 

  112. Jenkins, J. D., and T. L. Steck. 1983. Inactivation of phospho- fructokinase by human erythrocyte membrane band 3. Fed. Proc. 42:2079.

    Google Scholar 

  113. Murthy, S. N. P., T. Liu, R. K. Kaul, H. Kohler, and T. L. Steck. 1981. The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J. Biol. Chem. 256:11203–11208.

    PubMed  CAS  Google Scholar 

  114. Amone, A., R. Chatterjee, P. Rogers, G. F. Musso, E. T. Kaiser, T. L. Steck, and J. Walder. 1983. Hemoglobin’s binding site for the NH2-terminal peptide of the erythrocyte band 3 protein.Fed. Proc. 42:2196.

    Google Scholar 

  115. Simpson, R. J., K. M. Brindle, and J. D. Campbell. 1983. Centrifugal analysis of undiluted packed human erythrocyte lysates: Studies of the association of glyceraldehyde-phosphate dehydrogenase with the membrane fraction. Biochim. Biophys. Acta 758:187–190.

    Article  PubMed  CAS  Google Scholar 

  116. Jay, D.G. 1983. Characterization of the chicken erythrocyte anion exchange protein. J. Biol. Chem. 258:9431–9436.

    PubMed  CAS  Google Scholar 

  117. Kaul, R. K., S. N. P. Murthy, A. G. Reddy, T. L. Steck, and H. Kohler. 1983. Amino acid sequence of the Nα-terminal 201 residues of human erythrocyte membrane band 3. J. Biol. Chem. 258:7981–7990.

    PubMed  CAS  Google Scholar 

  118. Dekowski, S. A., A. Rybicki, and K. Drickamer. 1983. A tyrosine kinase associated with the red cell membrane phosphory- lates band 3. J. Biol. Chem. 258:2750–2753.

    PubMed  CAS  Google Scholar 

  119. Mueller, T. J., and M. Morrison. 1977. Detection of variants of protein 3, the major transmembrane protein of the human erythrocyte. J. Biol. Chem. 252:6573–6576.

    PubMed  CAS  Google Scholar 

  120. Appell, K. C., and P. S. Low. 1981. Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3.J. Biol. Chem. 256:11104–11111.

    PubMed  CAS  Google Scholar 

  121. Appell, K. C., and P. S. Low. 1982. Evaluation of structural interdependence of membrane-spanning and cytoplasmic domains of band 3.Biochemistry 21:2151–2157.

    Article  PubMed  CAS  Google Scholar 

  122. Hsu, L., and M. Morrison. 1983. The interaction of human erythrocyte band 3 with cytoskeletal components. Arch. Biochem. Biophys. 227:31–38.

    Article  PubMed  CAS  Google Scholar 

  123. Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J. Membr. Biol. 15:227–248.

    Article  PubMed  CAS  Google Scholar 

  124. Ramjeesingh, M., S. Grinstein, and A. Rothstein. 1980. Intrinsic segments of band 3 that are associated with anion transport across red blood cell membranes.J. Membr. Biol. 57:95–102.

    Article  PubMed  CAS  Google Scholar 

  125. Ramjeesingh, M., and A. Rothstein. 1982. The location of a chymotrypsin cleavage site and of other sites in the primary structure of the 17,000-dalton transmembrane segment of band 3, the anion transport protein of red cell. Membr. Biochem. 4:259–269.

    Article  PubMed  CAS  Google Scholar 

  126. Ramjeesingh, M., A. Gaam, and A. Rothstein. 1980. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane.Biochim. Biophys. Acta 599:127–139.

    Article  PubMed  CAS  Google Scholar 

  127. Knauf, P. A., W. Breuer, L. McCulloch, and A. Rothstein. 1978. NAP-taurine as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. J. Gen. Physiol. 72:631–649.

    Article  PubMed  CAS  Google Scholar 

  128. Markowitz, S., and V. Marchesi. 1981. The carboxyl terminal domain of human erythrocyte band 3: Description, isolation and location in the bilayer. J. Biol. Chem. 256:6463–6468.

    PubMed  CAS  Google Scholar 

  129. Drickamer, L. K. 1976. Fragmentation of the 95,000-dalton transmembrane polypeptide in human erythrocyte membranes: Arrangement of the fragments in the lipid bilayer. J. Biol. Chem. 251:5115–5123.

    PubMed  CAS  Google Scholar 

  130. Drickamer, L. K. 1977. Fragmentation of the band 3 polypeptide from human erythrocyte membranes: Identification of regions likely to interact with the lipid bilayer. J. Biol. Chem. 252:6909–6917.

    PubMed  CAS  Google Scholar 

  131. Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1981. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes. Biochim. Biophys. Acta 641:173–182.

    Article  PubMed  CAS  Google Scholar 

  132. Mawby, M. J., and J. B. C. Findlay. 1982. Characterization and partial sequence of di-iodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein. Biochem. J. 205:465–475.

    PubMed  CAS  Google Scholar 

  133. Waxman, L. 1979. The phosphorylation of the major proteins of the human erythrocyte membrane. Arch. Biochem. Biophys. 195:300–314.

    Article  PubMed  CAS  Google Scholar 

  134. Romano, L., and H. Passow. 1983. Characterization of the anion transport system in the red blood cell of the trout. Am. J. Physiol. 246:C330-C338.

    Google Scholar 

  135. Badea, M. G., and M. Morrison. 1980. Position of band 3 in erythrocyte membrane determined by use of fluorescent probes. Fed. Proc. 39:1713.

    Google Scholar 

  136. Boxer, D. H., R. E. Jenkins, and M. J. A. Tanner. 1974. The organization of the major protein of the human erythrocyte membrane. Biochem. J. 137:531–534.

    PubMed  CAS  Google Scholar 

  137. Bender, W. W., H. Garen, and H. C. Berg. 1971. Proteins of the human erythrocyte membrane as modified by Pronase. J. Mol. Biol. 58:783–797.

    Article  PubMed  CAS  Google Scholar 

  138. Jenkins, R. E., and M. J. A. Tanner. 1977. The structure of the major protein of the human erythrocyte membrane: Characterization of the intact protein and major fragments. Biochem. J. 161:139–147.

    PubMed  CAS  Google Scholar 

  139. Jennings, M. L., and H. Passow. 1979. Anion transport across the red cell membrane, in situ proteolysis of band 3 protein, and crosslinking of proteolytic fragments by 4,4′-diisothiocyanodihy- drostilbene-2,2′-disulfonate (H2DIDS). Biochim. Biophys. Acta 554:498–519.

    Article  PubMed  CAS  Google Scholar 

  140. Jennings, M. L. 1982. Reductive methylation of the two 4,4′- diisothiocyanodihydrostilbene-2,2′-disulfonate-binding lysine residues of band 3, the human erythrocyte anion transport protein. J. Biol. Chem. 257:7554–7559.

    PubMed  CAS  Google Scholar 

  141. Cabantchik, Z. I., W. Breuer, H. Markus, M. Balshin, and A. Rothstein. 1975. A comparison of intact human red blood cells and resealed and leaky ghosts with respect to their interactions with surface labelling agents and proteolytic enzymes. Biochim. Biophys. Acta 382:621–633.

    Article  PubMed  CAS  Google Scholar 

  142. Jennings, M. L., and M. F. Adams. 1981. Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein.Biochemistry 20:7118–7123.

    Article  PubMed  CAS  Google Scholar 

  143. Jennings, M. L., M. Adams-Lackey, and G. H. Denney. 1983. Peptides of erythrocyte band 3 protein produced by extracellular papain cleavage. Biophys. J. 41:242a.

    Google Scholar 

  144. Cousin, J.-L., and R. Motais. 1982. Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein. Biochim. Biophys. Acta 687:147–155.

    Article  PubMed  CAS  Google Scholar 

  145. Rao, A., and R. A. F. Reithmeier. 1979. Reactive sulfhydry groups of the band 3 polypeptide from human erythrocyte membrane: Location in the primary structure. J. Biol. Chem. 254: 6144–6150.

    PubMed  CAS  Google Scholar 

  146. Rao, A. 1979. Disposition of the band 3 polypeptide in the human erythrocyte membrane: The reactive sulfhydryl groups. J. Biol. Chem. 254:3503–3511.

    PubMed  CAS  Google Scholar 

  147. Ramjeesingh, M., A. Gaam, and A. Rothstein. 1981. The sulfhydryl groups of the 35,000 dalton C-terminal segment of band 3 are located in a 9,000-dalton fragment produced by chymotrypsin treatment of red cell ghosts. J. Bioenerg. Biomembr. 13:411–423.

    Article  PubMed  CAS  Google Scholar 

  148. Ramjeesingh, M., A. Gaam, and A. Rothstein. 1983. The locations of the three cysteine residues in the primary structure of the intrinsic segments of band 3 protein, and implications concerning the arrangement of band 3 protein in the bilayer. Biochim. Biophys. Acta 729:150–160.

    Article  PubMed  CAS  Google Scholar 

  149. Brock, C. J., M. J. A. Tanner, and C. Kempf. 1983. The human erythrocyte anion transport protein: Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem. J. 213:577–586.

    PubMed  CAS  Google Scholar 

  150. Tanner, M. J. A., D. G. Williams, and D. Kyle. 1979. The anion- transport protein of the human erythrocyte membrane: Studies on fragments produced by pepsin digestion. Biochem. J. 183:417–427.

    PubMed  CAS  Google Scholar 

  151. Sigrist, H., C. Kempf, and P. Zahler. 1980. Interactions of phe- nylisothiocyanate with human erythrocyte band 3. Biochim. Biophys. Acta 597:137–144.

    Article  PubMed  CAS  Google Scholar 

  152. Drickamer, K. 1978. Orientation of the band 3 polypeptide from human erythrocyte membranes: Identification of NH2-terminal sequence and site of carbohydrate attachment. J. Biol. Chem. 253:7242–7248.

    PubMed  CAS  Google Scholar 

  153. Tsuji, T., T. Irimura, and T. Osawa. 1980. The carbohydrate moiety of band-3 glycoprotein of human erythrocyte membranes. Biochem. J. 187:677–686.

    PubMed  CAS  Google Scholar 

  154. Tsuji, T., T. Irimura, and T. Osawa. 1981. The carbohydrate moiety of band-3 glycoprotein of human erythrocyte membranes: Structure of lower molecular weight oligosaccharides. J. Biol. Chem. 256:10497–10502.

    PubMed  CAS  Google Scholar 

  155. Tanner, M. J. A., R. E. Jenkins, D. J. Anstee, and J. R. Clamp. 1976. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a—) human erythrocytes. Biochem. J. 155:701–703.

    PubMed  CAS  Google Scholar 

  156. Guidotti, G. 1980. The structure of the band 3 polypeptide. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 300–308.

    Google Scholar 

  157. Ramjeesingh, M., A. Gaam, and A. Rothstein. 1984. Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim. Biophys. Acta 769:381–389.

    Article  PubMed  CAS  Google Scholar 

  158. Brunner, J., and G. Semenza. 1981. Selective labeling of the hydrophobic core of membranes with 3-(trifluorometh- yl)-3-(ra-[125I]-iodophenyl)diazirine, a carbene-generating reagent. Biochemistry 20:7174–7182.

    Article  PubMed  CAS  Google Scholar 

  159. Guidotti, G. 1977. The structure of intrinsic membrane proteins. J. Supramol. Struct. 7:489–497.

    Article  PubMed  CAS  Google Scholar 

  160. Reithmeier, R. A. 1979. Fragmentation of the band 3 polypeptide from human erythrocyte membranes: Size and detergent binding of the membrane associated domain.J. Biol. Chem. 254:3054–3060.

    PubMed  CAS  Google Scholar 

  161. Steck, T. L., J. J. Koziarz, M. K. Singh, G. Reddy, and H. Kohler. 1978. Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes. Biochemistry 17:1216–1222.

    Article  PubMed  CAS  Google Scholar 

  162. Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of ’probes.’ Biochim. Biophys. Acta 515:239–302.

    PubMed  CAS  Google Scholar 

  163. Motais, R., and J.-L. Cousin. 1978. A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplin- ary Approach. R. W. Straub and L. Bolis, eds. Raven Press, New York. pp. 219–225.

    Google Scholar 

  164. Motais, R., F. Sola, and J.-L. Cousin. 1978. Uncouplers of oxidative phosphorylation: A structure-activity study of their inhibitory effect on passive chloride permeability. Biochim. Biophys. Acta 510:201–207.

    Article  PubMed  CAS  Google Scholar 

  165. Barzilay, M., S. Ship, and Z. I. Cabantchik. 1979. Anion transport in red blood cells. I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids. Membr. Biochem. 2:227–254.

    Article  PubMed  CAS  Google Scholar 

  166. Fröhlich, O., and R. B. Gunn. 1980. Chloride transport kinetics of the human red blood cell studied with a reversible stilbene inhibitor. Fed. Proc. 39:1714.

    Google Scholar 

  167. Kampmann, L., S. Lepke, H. Fasold, G. Fritzsch, and H. Passow. 1982. The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4′-diisothio- cyanodihydrostilbene-2,2′-disulfonic acid (H2DIDS). J. Membr. Biol. 70:199–216.

    Article  PubMed  CAS  Google Scholar 

  168. Kleinfeld, A. M., E. D. Matayoshi, and A. K. Solomon. 1980. Use of band 3 vesicles from human erythrocytes to study protein structural changes associated with anion transport.Fed. Proc. 39:1714.

    Google Scholar 

  169. Verkman, A. S., J. A. Dix, and A. K. Solomon. 1982. A noncompetitive ’shunt’ pathway for the effect of chloride on the band 3-DBDS conformational change in red cell membranes.Biophys. J. 37:216a.

    Google Scholar 

  170. Kaplan, J. H., K. Scorah, H. Fasold, and H. Passow. 1976. Sidedness of the inhibitory action of disulfonic acids on chloride equilibrium exchange and net transport across the human erythrocyte membrane. FEBS Lett. 62:182–185.

    Article  PubMed  CAS  Google Scholar 

  171. Pappert, G., and D. Schubert. 1983. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents. Biochim. Biophys. Acta 730:32–40.

    Article  PubMed  CAS  Google Scholar 

  172. Cherry, R. J., and E. Nigg. 1979. Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature (.London ) 277:493–494.

    Article  Google Scholar 

  173. Nakashima, H., Y. Nakagawa, and S. Makino. 1981. Detection of the associated state of membrane proteins by Polyacrylamide gradient gel electrophoresis with non-denaturing detergents. Biochim. Biophys. Acta 643:509–518.

    Article  PubMed  CAS  Google Scholar 

  174. Wang, K, and F. M. Richards. 1974. Reaction of dimethy 1–3,3′- dithiobispropionimidate with intact human erythrocytes. J. Biol. Chem. 249:8005–8018.

    PubMed  CAS  Google Scholar 

  175. Staros, J. V., and B. P. Kakkad. 1983. Cross-linking and chymotryptic digestion of the extracytoplasmic domain of the anion exchange channel in intact human erythrocytes. J. Membr. Biol. 74:247–254.

    Article  PubMed  CAS  Google Scholar 

  176. Weinstein, R. S., J. K. Khodadad, and T. L. Steck. 1980. The band 3 protein intramembrane particle of the human red blood cell. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 35–46.

    Google Scholar 

  177. Dissing, S., A. J. Jesaitis, and P. A. G. Fortes. 1979. Fluorescence labeling of the human erythrocyte anion transport system: Subunit structure studied with energy transfer.Biochim. Biophys. Acta 553:66–83.

    Article  PubMed  CAS  Google Scholar 

  178. Muhlebach, T., and R. Cherry. 1982. Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane. Biochemistry 21:4225–4228.

    Article  PubMed  CAS  Google Scholar 

  179. Dorst, H.-J., and D. Schubert. 1979. Self-association of band 3- protein from human erythrocyte membrarfes in aqueous solution. Hoppe-Seyler’s Z. Physiol. Chem. 360:1605–1618.

    Article  PubMed  CAS  Google Scholar 

  180. Schubert, D., and K. Boss. 1982. Band three protein-cholesterol interactions in erythrocyte membranes: Possible role in anion transport and dependency on membrane phospholipid. FEBSLett. 150:4–8.

    Article  CAS  Google Scholar 

  181. Aubert, L., and R. Motais. 1975. Molecular features of organic anion permeability in ox red blood cell. J. Physiol. (London) 246:159–179.

    CAS  Google Scholar 

  182. Ship, S., Y. Shami, W. Breuer, and A. Rothstein. 1977. Synthesis of tritiated 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid ((3H2)DIDS) and its covalent reaction with sites related to anion transport in red blood cells.J. Membr. Biol. 33:311–324.

    Article  PubMed  CAS  Google Scholar 

  183. Wieth, J. O., P. J. Bjerrum, J. Brahm, and O. S. Andersen. 1982. The anion transport protein of the red cell membrane: A zipper mechanism of anion exchange. Tokai J. Exp. Clin. Med. 7 (Suppl.):91–101.

    PubMed  CAS  Google Scholar 

  184. Davio, S. R., and P. S. Low. 1982. Characterization of the cal- orimetric C transition of the human erythrocyte membrane. Biochemistry 21:3585–3593.

    Article  PubMed  CAS  Google Scholar 

  185. Ginsburg, H., S. E. O’Connor, and C. M. Grisham. 1981. Evidence from electron paramagnetic resonance for function-related conformation changes in the anion-transport protein of human erythrocytes. Eur. J. Biochem. 114:533–538.

    Article  PubMed  CAS  Google Scholar 

  186. Kaplan, J. H., M. Pring, and H. Passow. 1983. Band 3 protein- mediated anion conductance of the red cell membrane: Slippage versus ionic diffusion. FEBS Lett. 156:175–179.

    Article  PubMed  CAS  Google Scholar 

  187. Fröhlich, O., C. Leibson, and R. B. Gunn. 1983. Chloride net efflux from intact erythrocytes under slippage conditions: Evidence for a positive charge on the anion binding/transport site. J. Gen. Physiol. 81:127–152.

    Article  PubMed  Google Scholar 

  188. Knauf, P. A., F.-Y. Law, and P. J. Marchant. 1983. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81:95–126.

    Article  PubMed  CAS  Google Scholar 

  189. Passow, H. 1977. Passive anion transport. Proc. Int. Union Physiol. Sei. 12:86–87.

    Google Scholar 

  190. Knauf, P. A., N. Mann, and J. E. Kalwas. 1983. Net chloride transport across the human erythrocyte membrane into low chloride media: Evidence against a slippage mechanism. Biophys. J. 41:164a.

    Google Scholar 

  191. Fröhlich, O. 1983. Contributions of slippage and tunneling to anion net transport across the human red cell membrane.Biophys. J. 41:63a.

    Google Scholar 

  192. Knauf, P. A., and F.-Y. Law. 1980. Relationship of net anion flow to the anion exchange system. In: Membrane Transport in Erythrocytes. U. V. Lassen, H.H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 488–493.

    Google Scholar 

  193. Kregenow, F. M. 1971. The response of duck erythrocytes to nonhemolytic hypotonic media: Evidence for a volume-controlling mechanism. J. Gen. Physiol. 58:372–395.

    Article  PubMed  CAS  Google Scholar 

  194. Kregenow, F. M. 1971. The response of duck erythrocytes to hypertonic media: Further evidence for a volume-controlling mechanism. J. Gen. Physiol. 58:396–412.

    Article  PubMed  CAS  Google Scholar 

  195. Parker, J. C. 1983. Hemolytic action of potassium salts on dog red blood cells. Am. J. Physiol. 244:C313-C317.

    PubMed  CAS  Google Scholar 

  196. Lauf, P. K. 1982. Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost, Opsanus tau. J. Comp. Physiol. 146:9–16.

    CAS  Google Scholar 

  197. Dunham, P. B., and J. C. Ellory. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318:511–530.

    CAS  Google Scholar 

  198. Kregenow, F. M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Annu. Rev. Physiol. 43:493–505.

    Article  PubMed  CAS  Google Scholar 

  199. Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium- coupled chloride transport by epithelial tissues. Am. J. Physiol. 236.F1-F8.

    PubMed  CAS  Google Scholar 

  200. Ørskov, S. L. 1954. The potassium absorption by pigeon blood cells: A considerable potassium absorption by pigeon and hen blood cells is observed when a hypertonic sodium chloride solution is added. Acta Physiol. Scand. 31:221–229.

    Article  PubMed  Google Scholar 

  201. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insen- sitive salt and water movements in duck red cells. II. Norepinephrine-stimulation of sodium plus potassium cotransport. J. Gen. Physiol. 70:81–97.

    Article  PubMed  CAS  Google Scholar 

  202. Riddick, D. H., F. M. Kregenow, and J. Orloff. 1971. The effect of norepinephrine and dibutyryl cyclic-AMP on cation transport in duck erythrocytes. J. Gen. Physiol. 57:752–766.

    Article  PubMed  CAS  Google Scholar 

  203. Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium: Volume regulation in isotonic media. J. Gen. Physiol. 61:509–527.

    Article  PubMed  CAS  Google Scholar 

  204. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insen- sitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J. Gen. Physiol. 70:99–121.

    Article  PubMed  CAS  Google Scholar 

  205. Alper, S. L., K. G. Beam, and P. Greengard. 1980. Hormonal control of Na + -K+ co-transport in turkey erythrocytes: Multiple site phosphorylation of goblin, a high molecular weight protein of the plasma membrane. J. Biol. Chem. 255:4864–4871.

    PubMed  CAS  Google Scholar 

  206. Alper, S. L., H. C. Palfrey, S. A. DeRiemer, and P. Greengard. 1980. Hormonal control of protein phosphorylation in turkey erythrocytes: Phosphorylation by cAMP-dependent and Ca2 + -dependent protein kinases of distinct sites in goblin, a high molecular weight protein of the plasma membrane. J. Biol. Chem. 255:11029–11039.

    PubMed  CAS  Google Scholar 

  207. Kregenow, F. M., D. E. Robbie, and J. Orloff. 1976. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am. J. Physiol. 231:306–312.

    PubMed  CAS  Google Scholar 

  208. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insen- sitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions. J. Gen. Physiol. 70:59–79.

    Article  PubMed  CAS  Google Scholar 

  209. Palfrey, H. C., P. W. Feit, and P. Greengard. 1980. cAMP- stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics. Am. J. Physiol. 238.C139-C148.

    PubMed  CAS  Google Scholar 

  210. Haas, M., W. F. Schmidt, III, and T. J. McManus. 1982. Catecholamine-stimulated ion transport in duck red cells: Gradient effects in electrically neutral [Na + K + 2 CI] co-transport. J. Gen. Physiol. 80:125–147.

    Article  PubMed  CAS  Google Scholar 

  211. Kregenow, F. M., and T. Caryk. 1979. Co-transport of cations and CI during the volume regulatory responses of duck erythrocytes. Physiologist 22(4):73.

    Google Scholar 

  212. Bakker-Grunwald, T. 1981. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent. Biochim. Biophys. Acta 641:427–431.

    Article  PubMed  CAS  Google Scholar 

  213. Cala, P. M. 1983. Volume regulation by red blood cells: Mechanisms of ion transport. Mol. Physiol. 4:33–52.

    CAS  Google Scholar 

  214. Haas, M., and T. J. McManus. 1983. Bumetanide inhibits (Na + K + 2 CI) co-transport at a chloride site. Am. J. Physiol. 245: C235-C240.

    PubMed  CAS  Google Scholar 

  215. Haas, M., and T. J. McManus. 1982. Bumetanide inhibition of (Na + K + 2 CI) co-transport and K/Rb exchange at a chloride site in duck red cells: Modulation by external cations. Biophys. J. 37:214a.

    Google Scholar 

  216. Forbush, B., III, and H. C. Palfrey. 1983. 3H-bumetanide binding to membranes isolated from dog kidney outer medulla. J. Biol. Chem. 258:11787–11792.

    PubMed  CAS  Google Scholar 

  217. Palfrey, H. C. 1983. Na/K/Cl cotransport in avian red cells. Reversible inhibition by ATP depletion. J. Gen. Physiol. 82:10a.

    Google Scholar 

  218. McManus, T. J. 1982. Catecholamine-stimulated and volume- sensitive ion movements in avian red cells: Alternate modes of chloride-dependent cation transport. Jacobs-Parpart-Ponder Memorial Lecture. Red Cell Club. April 19, 1982.

    Google Scholar 

  219. Parker, J. C., and J. F. Hoffman. 1976. Influence of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433:404–408.

    Article  CAS  Google Scholar 

  220. Cala, P. M. 1980. Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways. J. Gen. Physiol. 76:683–708.

    Article  PubMed  CAS  Google Scholar 

  221. Ellory, J. C., P. B. Dunham, P. J. Logue, and G. W. Stewart. 1982. Anion-dependent cation transport in erythrocytes. Philos. Trans. R. Soc. London Ser. B 299:483–495.

    Article  CAS  Google Scholar 

  222. Smalley, C. E., E. M. Tucker, P. B. Dunham, and J. C. Ellory. 1982. Interaction of L antibody with low potassium type sheep red cells: Resolution of two separate functional antibodies. J. Membr. Biol. 64:167–174.

    Article  PubMed  CAS  Google Scholar 

  223. Ellory, J. C., and P. B. Dunham. 1980. Volume-dependent passive potassium transport in LK sheep red cells. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 409–423.

    Google Scholar 

  224. Bauer, J., and P. K. Lauf. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. III. Differential reactivity of membrane SH groups with N-ethylmaleimide and iodoacetamide. J. Membr. Biol. 73:257–261.

    Article  PubMed  CAS  Google Scholar 

  225. Lauf, P. K., and B. E. Theg. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem. Biophys. Res. Commun. 92:1422–1428.

    Article  PubMed  CAS  Google Scholar 

  226. Lauf, P. K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. II. Loss of Cl_ and N-ethylmaleimide sensitivity in maturing high K+ cells. J. Membr. Biol. 73:247–256.

    Article  PubMed  CAS  Google Scholar 

  227. Lauf, P. K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. I. Dependence on chloride and external K + (Rb +) ions. J. Membr. Biol. 73:237–246.

    Article  PubMed  CAS  Google Scholar 

  228. Gunn, R. B., M. Dalmark, D. C. Tosteson, and J. O. Wieth. 1973. Characteristics of chloride transport in human red blood cells. J. Gen. Physiol. 61:185–206.

    Article  PubMed  CAS  Google Scholar 

  229. Lauf, P. K. 1984. Thiol-dependent K/Cl transport in sheep red cells. IV. Furosemide inhibition and the role of external Rb+, Na+ and CI-. J. Membr. Biol. 77:57–62.

    Article  PubMed  CAS  Google Scholar 

  230. Lauf, P. K. 1983. Thiol-dependent passive K + -CI- transport in sheep red blood cells. V. Dependence on metabolism. Am. J. Physiol. 245:C445-C448.

    PubMed  CAS  Google Scholar 

  231. Duhm, J. 1981. Lithium transport pathways in erythrocytes. In: Basic Mechanisms in the Action of Lithium. H. M. Emrich, J. B. Aldenhoff, and H. D. Lux, eds. Excerpta Medica, Amsterdam, pp. 1–20.

    Google Scholar 

  232. Lauf, P, K., R. Garay, and N. C. Adragna. 1982. N-Eth- ylmaleimide stimulates chloride-dependent K + but not Na + fluxes in human red cells. J. Gen. Physiol. 80:19a.

    Article  Google Scholar 

  233. Wiater, L. A., and P. B. Dunham. 1983. Passive transport of potassium and sodium in human erythrocytes: Effects of sulfhy- dryl binding agents and furosemide. Am. J. Physiol. 245:C348-C356.

    PubMed  CAS  Google Scholar 

  234. Wiley, J. S., and R. A. Cooper. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J. Clin. Invest. 53:745–755.

    Article  PubMed  CAS  Google Scholar 

  235. Chipperfield, A. R. 1980. An effect of chloride on (Na + K) co- transport in human red blood cells. Nature (London) 286:281–282.

    Article  CAS  Google Scholar 

  236. Dunham, P. B., G. W. Stewart, and J. C. Ellory. 1980. Chloride- activated passive potassium transport in human erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 77:1711–1715.

    Article  PubMed  CAS  Google Scholar 

  237. Ellory, J. C., and G. W. Stewart. 1982. The human erythrocyte Cl-dependent Na-K cotransport system as a possible model for studying the action of loop diuretics. Br. J. Pharmacol. 75:183–188.

    PubMed  CAS  Google Scholar 

  238. Garay, R., N. Adragna, M. Canessa, and D. Tosteson. 1981. Outward sodium and potassium cotransport in human red cells. J. Membr. Biol. 62:169–174.

    Article  PubMed  CAS  Google Scholar 

  239. Benjamin, M. A., and P. B. Dunham. 1983. Asymmetry of Na/K cotransport in human erythrocytes. J. Gen. Physiol. 82:27a.

    Google Scholar 

  240. Adragna, N., M. Canessa, I. Bize, R. Garay, and D. C. Tosteson. 1980. (Na + K) co-transport and cell volume in human red blood cells. Fed. Proc. 39:1842.

    Google Scholar 

  241. Canessa, M., D. Cusi, C. Brugnara, and D. C. Tosteson. 1983. Furosemide-sensitive Na fluxes in human red cells: Equilibrium properties and net uphill extrusion. J. Gen. Physiol. 82:28a.

    Google Scholar 

  242. Brugnara, C., M. Canessa, D. Cusi, and D. C. Tosteson. 1983. Furosemide-sensitive Na and K fluxes in human red cells: Uncoupled K efflux, K-K exchange and variable stoichiometry. J. Gen. Physiol. 82:28a.

    Google Scholar 

  243. Hall, A. C., J. C. Ellory, and R. A. Klein. 1982. Pressure and temperature effects on human red cell cation transport. J. Membr. Biol. 68:47–56.

    Article  PubMed  CAS  Google Scholar 

  244. Karlish, S. J. D., J. C. Ellory, and V. L. Lew. 1981. Evidence against Na + -pump mediation of Ca2 +-activated K+ transport and diuretic-sensitive (Na + /K +)-cotransport. Biochim. Biophys. Acta 646:353–355.

    Article  PubMed  CAS  Google Scholar 

  245. Logue, P., C. Anderson, C. Kanik, B. Farquharson, and P. Dunham. 1983. Passive potassium transport in LK sheep red cells: Modification by N-ethyl maleimide. J. Gen. Physiol. 81:861–885.

    Article  PubMed  CAS  Google Scholar 

  246. Geek, P., C. Pietrzyk, B.-C. Burckhardt, B. Pfeiffer, and E. Heinz. 1980. Electrically silent cotransport of Na+, K+ and CI ~ in Ehrlich cells. Biochim. Biophys. Acta 600:423–447.

    Google Scholar 

  247. Bakker-Grunwald, T. 1978. Effect of anions on potassium self- exchange in ascites tumor cells. Biochim. Biophys. Acta 513:292–295.

    Article  PubMed  CAS  Google Scholar 

  248. Aull, F. 1981. Potassium chloride cotransport in steady-state ascites tumor cells: Does bumetanide inhibit? Biochim. Biophys. Acta 643:339–345.

    Article  PubMed  CAS  Google Scholar 

  249. Hoffman, E. K, C. Sjoholm, and L. O. Simonsen. 1983. Na+, Cl_ co-transport in Ehrlich ascites tumor cells activated during volume regulation. (Regulatory volume increase). J. Membr. Biol. 76:269–280.

    Article  Google Scholar 

  250. Ussing, H. H. 1982. Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114:363–369.

    Article  PubMed  CAS  Google Scholar 

  251. Rindler, M. J., M. Taub, and M. H. Saier, Jr. 1979. Uptake of 22Na+ by cultured dog kidney cells (MDCK). J. Biol. Chem. 254:11431–11439.

    PubMed  CAS  Google Scholar 

  252. Aiton, J. F., A. R. Chipperfield, J. F. Lamb, P. Ogden, and N. L. Simmons. 1981. Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells.Biochim. Biophys. Acta 646:389–398.

    Article  PubMed  CAS  Google Scholar 

  253. Aiton, J. F., C. D. A. Brown, P. Ogden, and N. L. Simmons. 1982. K+ transport in ’tight’ epithelial monolayers of MDCK cells. J. Membr. Biol. 65:99–109.

    Article  PubMed  CAS  Google Scholar 

  254. Rindler, M. J., J. A. McRoberts, and M. H. Saier, Jr. 1982. (Na+,K +)-cotransport in the Madin-Darby canine kidney cell line: Kinetic characterization of the interaction between Na+ and K+. J. Biol. Chem. 257:2254–2259.

    PubMed  CAS  Google Scholar 

  255. McRoberts, J. A., S. Erlinger, M. J. Rindler, and M. H. Saier, Jr. 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line: Evidence for the transport of Na +, K +, and CI-. J. Biol. Chem. 257:2260–2266.

    PubMed  CAS  Google Scholar 

  256. Kimelberg, H. K., and R. S. Bourke. 1982. Anion transport in the nervous system. In: Handbook of Neurochemistry, Volume 1, 2nd ed. A. Lajtha, ed. Plenum Press, New York. pp. 31–67.

    Google Scholar 

  257. Gargus, J. J., and Slayman, C. W. 1980. Mechanism and role of furosemide-sensitive K + transport in L cells: A genetic approach. J. Membr. Biol. 52:245–256.

    Article  PubMed  CAS  Google Scholar 

  258. O’Brien, T. G., and K. Krzeminski. 1983. Phorbol ester inhibits furosemide-sensitive potassium transport in BALB/c 3T3 pre- adipose cells.Proc. Natl. Acad. Sci. U.S.A. 80:4334–4338.

    Article  PubMed  Google Scholar 

  259. Russell, J. 1983. Cation-coupled chloride influx in squid axon: Role of potassium and stoichiometry of the transport process. J. Gen. Physiol. 81:909–925.

    Article  PubMed  CAS  Google Scholar 

  260. Harper, P. A., and Knauf, P. A. 1979. Comparison of chloride transport in mouse erythrocytes and Friend virus-transformed erythroleukemic cells.J. Cell. Physiol. 98:347–358.

    Article  PubMed  CAS  Google Scholar 

  261. Law, F.-Y., R. Steinfeld, and P. A. Knauf. 1983. K562 cell anion exchange differs markedly from that of mature red blood cells. Am. J. Physiol. 244:C68-C74.

    PubMed  CAS  Google Scholar 

  262. Dissing, S., R. Hoffman, M. J. Murnane, and J. F. Hoffman. 1984. Chloride transport properties of human leukemic cell lines K562 and HL60. Am. J. Physiol. 247(Cell Physiol. 16): C53-C60.

    PubMed  CAS  Google Scholar 

  263. Harper, P. A., and Knauf, P. A. 1979. Alterations in chloride transport during differentiation of Friend virus-transformed cells. J. Cell. Physiol. 99:369–382.

    Article  PubMed  CAS  Google Scholar 

  264. Sabban, E. L., D. D. Sabatini, V. T. Marchesi, and M. Adesnik. 1980. Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemic cells. J. Cell. Physiol. 104:261–268.

    Article  PubMed  CAS  Google Scholar 

  265. Lodish, H. F., and Small, B. 1975. Membrane proteins synthesized by rabbit reticulocytes. J. Cell Biol. 65:51–64.

    Article  PubMed  CAS  Google Scholar 

  266. Koch, P. A., F. H. Gardner, J. E. Gartrell, and J. R. Carter, Jr. 1975. Biogenesis of erythrocyte membrane proteins: In vitro studies with rabbit reticulocytes. Bioehim. Biophys. Acta 389:177–187.

    Article  CAS  Google Scholar 

  267. Light, N. D., and M. J. A. Tanner. 1977. Changes in surface- membrane components during the differentiation of rabbit erythroid cells. Biochem. J. 164:565–578.

    PubMed  CAS  Google Scholar 

  268. Fehlmann, M., L. LaFleur, and N. Marceau. 1976. Surface membrane differentiation of hemopoietic cells as observed by radioactive labeling. J. Cell. Physiol. 90:455–464.

    Article  Google Scholar 

  269. Light, N. D., and M. J. A. Tanner. 1978. Erythrocyte membrane proteins: Sequential accumulation in the membrane during reticulocyte maturation. Bioehim. Biophys. Acta 508:571–576.

    Article  CAS  Google Scholar 

  270. Sabban, E., V. Marchesi, M. Adesnik, and D. D. Sabatini. 1981. Erythrocyte membrane protein band 3: Its biosynthesis and incorporation into membranes. J. Cell Biol. 91:637–646.

    Article  PubMed  CAS  Google Scholar 

  271. Le Vinson, C. 1982. Chloride transport in the Ehrlich mouse ascites tumor cell. In: Chloride Transport in Biological Membranes. J. Zadunaisky, ed. Academic Press, New York. pp. 383–396.

    Google Scholar 

  272. Hoffman, E. K. 1982. Anion exchange and anion-cation co-transport systems in mammalian cells.Philos. Trans. R. Soc. London Ser. B 299:519–535.

    Article  Google Scholar 

  273. Levinson, C., and M. L. Villereal. 1973. Anion transport in the Ehrlich ascites tumor cell: The effect of 2,4,6-trinitrobenzene sulfonic acid. J. Cell. Physiol. 82:435–444.

    Article  PubMed  CAS  Google Scholar 

  274. Levinson, C., and M. L. Villereal. 1975. The transport of sulfate ions across the membrane of the Ehrlich ascites tumor cell. J. Cell. Physiol. 85:1–14.

    Article  PubMed  CAS  Google Scholar 

  275. Levinson, C., and M. L. Villereal. 1975. Interaction of the fluorescent probe, l-anilino-8-naphthalene sulfonate, with the sulfate transport system of Ehrlich ascites tumor cells. J. Cell. Physiol. 86:143–154.

    Article  PubMed  CAS  Google Scholar 

  276. Levinson, C. 1975. The interaction of chloride with the sulfate transport system of Ehrlich ascites tumor cells. J. Cell. Physiol. 87:235–244.

    Article  PubMed  CAS  Google Scholar 

  277. Villereal, M. L., and C. Levinson. 1977. Chloride-stimulated sulfate efflux in Ehrlich ascites tumor cells: Evidence for 1: 1 coupling. J. Cell. Physiol. 90:553–564.

    Article  PubMed  CAS  Google Scholar 

  278. Villereal, M. L., and C. Levinson. 1976. Inhibition of sulfate transport in Ehrlich ascites tumor cells by 4-acetamido-4′-isothio- cyano-stilbene-2,2′-disulfonic acid (SITS). J. Cell. Physiol. 89:303—311.

    Article  PubMed  CAS  Google Scholar 

  279. Levinson, C., R. J. Corcoran, and E. H. Edwards. 1979. Interaction of tritium-labeled H2DIDS (4,4′-diisothiocyano-l,2-di- phenylethane-2,2′-disulfonic acid) with the Ehrlich mouse ascites tumor cell. J. Membr. Biol. 45:61–79.

    Article  PubMed  CAS  Google Scholar 

  280. Levinson, C. 1980. Transport of anions in Ehrlich ascites tumor cells: Effects of disulfonic acid stilbene in relation to transport mechanism. Ann. N.Y. Acad. Sci. 341:482–493.

    Article  PubMed  CAS  Google Scholar 

  281. Hoffmann, E. K., L. O. Simonsen, and C. Sjoholm. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumor cells. J. Physiol. (London) 296:61-84.

    CAS  Google Scholar 

  282. Heinz, E., P. Geek, and C. Pietrzyk. 1975. Driving forces of amino acid transport in animal cells. Ann. N.Y. Acad. Sci. 264:428–441.

    Article  PubMed  CAS  Google Scholar 

  283. Aull, F., M. S. Nachbar, and J. D. Oppenheim. 1977. Chloride self exchange in Ehrlich ascites cells: Inhibition by furosemide and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid. Bioehim. Biophys. Acta 471:341–347.

    Article  CAS  Google Scholar 

  284. Levinson, C. 1978. Chloride and sulfate transport in Ehrlich ascites tumor cells: Evidence for a common mechanism. J. Cell. Physiol. 95:23–32.

    Article  PubMed  CAS  Google Scholar 

  285. Aull, F. 1979. Saturation behavior of ascites tumor cell chloride exchange in the presence of gluconate. Bioehim. Biophys. Acta 554:538–540.

    Article  CAS  Google Scholar 

  286. Levinson, C., and M. L. Villereal. 1976. The transport of chloride in Ehrlich ascites tumor cells. J. Cell. Physiol. 88:181–192.

    Article  PubMed  CAS  Google Scholar 

  287. Bowen, J. W., and C. Levinson. 1982. Phosphate concentration and transport in Ehrlich ascites tumor cells: Effect of sodium. J. Cell. Physiol. 110:149–154.

    Article  PubMed  CAS  Google Scholar 

  288. Bowen, J. W., and C. Levinson. 1983. Evidence for monovalent phosphate transport in Ehrlich ascites tumor cells. J. Cell. Physiol. 116:142–148.

    Article  PubMed  CAS  Google Scholar 

  289. Brown, K. D., and J. F. Lamb. 1975. Na-dependent phosphate transport in cultured cells. J. Physiol. (London ) 251:58P-59P.

    CAS  Google Scholar 

  290. Hamilton, R. T., and M. Nilsen-Hamilton. 1978. Transport of phosphate in membrane vesicles from mouse fibroblasts transformed by simian virus 40.J. Biol. Chem. 253:8247–8256.

    PubMed  CAS  Google Scholar 

  291. Lever, J. E. 1980. Phosphate ion transport in fibroblast plasma membrane vesicles.Ann. N.Y. Acad. Sci. 341:37–47.

    Article  PubMed  CAS  Google Scholar 

  292. Henderson, G. B., and E. M. Zevely. 1982. Intracellular phosphate and its possible role as an exchange anion for active transport of methotrexate in L1210 cells. Biochem. Biophys. Res. Commun. 104:474–482.

    Article  PubMed  CAS  Google Scholar 

  293. Grinstein, S., C. A. Clarke, A. DuPre, and A. Rothstein. 1982. Volume-induced increase of anion permeability in human lymphocytes. J. Gen. Physiol. 80:801–823.

    Article  PubMed  CAS  Google Scholar 

  294. Grinstein, S., C. A. Clarke, and A. Rothstein. 1982. Increased anion permeability during volume regulation in human lymphocytes. Philos. Trans. R. Soc. London Ser. B 229:509–519.

    Article  Google Scholar 

  295. Grinstein, S., A. Rothstein, B. Sarkadi, and E. W. Gelfand. 1984. Responses of lymphocytes to anisotonic media: Volume regulating behavior. Am. J. Physiol. 246:C204-C215.

    PubMed  CAS  Google Scholar 

  296. Sarkadi, B., S. Grinstein, E. Mack, and A. Rothstein. 1983. An anion conductance pathway is involved in regulatory volume decrease in human lymphocytes. Biophys. J. 41:188a.

    Google Scholar 

  297. Cheung, R. K., S. Grinstein, and E. W. Gelfand. 1982. Volume regulation by human lymphocytes: Identification of differences between the two major lymphocyte subpopulations. J. Clin. Invest. 70:632–638.

    Article  PubMed  CAS  Google Scholar 

  298. Grinstein, S., C. A. Clarke, A. Rothstein, and E. W. Gelfand. 1983. Volume-induced anion conductance in human B lymphocytes is cation independent. Am. J. Physiol. 245:C160-C163.

    PubMed  CAS  Google Scholar 

  299. Cheng, S., and D. Levy. 1980. Characterization of the anion transport system in hepatocyte plasma membranes. J. Biol. Chem. 255:2637–2640.

    PubMed  CAS  Google Scholar 

  300. Levy, D., and S. Cheng. 1980. Photoaffinity labeling of anion transport components in hepatocyte plasma membranes. Ann. N.Y. Acad. Sci. 346:232–243.

    Article  PubMed  CAS  Google Scholar 

  301. Kimelberg, H. K. 1981. Active accumulation and exchange transport of chloride in astroglial cells in culture. Bioehim. Biophys. Acta 646:179–184.

    Article  CAS  Google Scholar 

  302. Kimelberg, H. K., R. S. Bourke, P. E. Stieg, K. D. Barron, H. Hirata, E. W. Pelton, and L. R. Nelson. 1982. Swelling of astroglia after injury to the central nervous system: Mechanisms and consequences. In: Head Injury: Basic and Clinical Aspects. R. G. Grossman and P. L. Gildenberg, eds. Raven Press, New York. pp. 31–44.

    Google Scholar 

  303. Fukuda, M., Y. Eshdat, G. Tarone, and V. T. Marchesi. 1978. Isolation and characterization of peptides derived from the cytoplasmic segment of band 3, the predominant intrinsic membrane protein of the human erythrocyte.J. Biol. Chem. 253:2419–2428.

    PubMed  CAS  Google Scholar 

  304. England, B. J., R. B. Gunn, and T. L. Steck. 1980. An immunological study of band 3, the anion transport protein of the human red blood cell membrane.Biochim. Biophys. Acta 623:171–182.

    PubMed  CAS  Google Scholar 

  305. Edwards, P. A. W. 1980. Monoclonal antibodies that bind to the human erythrocyte-membrane glycoproteins glycophorin A and band 3. Biochem. Soc. Trans. 8:334–335.

    PubMed  CAS  Google Scholar 

  306. Fukuda, M., M. N. Fukuda, T. Papayannopoulou, and S. Hakomori. 1980. Membrane differentiation in human erythroid cells: Unique profiles of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages. Proc. Natl. Acad. Sci. U.S.A. 77:3474–3478.

    Article  PubMed  CAS  Google Scholar 

  307. Jones, G. S., N. A. Mann, J. E. Kalwas, and P. A. Knauf. 1983. Relation of low ionic strength induced K+ efflux to the anion transport system in human erythrocytes. Fed. Proc. 42:606.

    Google Scholar 

  308. Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. London Ser. B 299:401–411.

    Article  CAS  Google Scholar 

  309. Knauf, P. A., and N. Mann. 1984. Location of the modifier site of the human erythrocyte anion exchange system. Biophys. J. 45:18a.

    Article  Google Scholar 

  310. Bjerrum, P. J. 1983. Identification and location of amino acid residues essential for anion transport in red cell membranes. In: Structure and Function of Membrane Proteins. E. Quagliariello and F. Palmieri, eds. Elsevier, Amsterdam, pp. 107–115.

    Google Scholar 

  311. Jennings, M. L., M. Adams-Lackey, and G. H. Denney. 1984. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259:4652–4660.

    PubMed  CAS  Google Scholar 

  312. Gardos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30:653–654.

    Article  PubMed  CAS  Google Scholar 

  313. Craik, J. D., and R. A. F. Reithmeier. 1984. Inhibition of anion transport in human erythrocytes by carbodiimides. Biophys. J. 45:199a.

    Google Scholar 

  314. Kohne, W., B. Deuticke, and C. W. M. Haest. 1983. Phospholipid dependence of the anion transport system of the human erythrocyte membrane: Studies on reconstituted band 3/lipid vesicles. Biochim. Biophys. Acta 730:139–150.

    Article  PubMed  CAS  Google Scholar 

  315. Grunze, M., B. Forst, and B. Deuticke. 1980. Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim. Biophys. Acta 600:860–869.

    Article  PubMed  CAS  Google Scholar 

  316. Lauf, P. K. 1984. Immunological identity of K + /Cl~ cotransport in low K + sheep red cells stimulated by cell swelling on N-eth- ylmaleimide. Biophys. J. 45:19a.

    Google Scholar 

  317. Duhm, J., and B. O. Göbel. 1984. Na+-K+ transport and volume of rat erythrocytes under dietary K + deficiency. Am. J. Physiol. 246:C20-C29.

    PubMed  CAS  Google Scholar 

  318. Barzilay, M., and Z. I. Cabantchik. 1979. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr. Biochem. 2:255–281.

    Article  PubMed  CAS  Google Scholar 

  319. Steck, T. L., and G. Dawson. 1974. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J. Biol. Chem. 249:2135–2142.

    PubMed  CAS  Google Scholar 

  320. Schnell, K. F. 1977. Anion transport across the red blood cell membrane mediated by dielectric pores. J. Membr. Biol. 37:99–136.

    Article  PubMed  CAS  Google Scholar 

  321. Jennings, M. L. 1985. Kinetics and mechanism of anion transport in red blood cells. Annu. Rev. Physiol, in press.

    Google Scholar 

  322. Falke, J. J., R. J. Pace, and S. I. Chan. 1984. Chloride binding to the anion transport binding sites of band 3: A 35C1 NMR study. J. Biol. Chem. 259:6472–6480.

    PubMed  CAS  Google Scholar 

  323. Falke, J. J., R. J. Pace, and S. I. Chan. 1984. Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors: A 35C1 NMR study. J. Biol. Chem. 259:6481–6491.

    PubMed  CAS  Google Scholar 

  324. Johnson, J. H., D. P. Dunn, and R. N. Rosenberg. 1982. Furosemide-sensitive K + channel in glioma cells but not neuroblastoma cells in culture. Biochem. Biophys. Res. Commun. 109:100–105.

    Article  PubMed  CAS  Google Scholar 

  325. Kay, M. M. B., S. R. Goodman, K. Sorenson, C. F. Whitfield, P. Wong, L. Zaki, and V. Rudloff. 1983. Senescent cell antigen is immunologically related to band 3. Proc. Natl. Acad. Sci. U.S.A. 80:1631–1635.

    Article  PubMed  CAS  Google Scholar 

  326. Kay, M. M. B., C. M. Tracey, S. R. Goodman, J. C. Cone, and P. S. Bassel. 1983. Polypeptides immunologically related to band 3 are present in nucleated somatic cells. Proc. Natl. Acad. Sci. U.S.A. 80:6882–6886.

    Article  PubMed  CAS  Google Scholar 

  327. Solomon, A. K., B. Chasen, J. A. Dix, M. F. Lukacovic, M. R. Toon, and A. S. Verkman. 1983. The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, non- electrolytes and water. Ann. N.Y. Acad. Sci. 414:97–134.

    Article  PubMed  CAS  Google Scholar 

  328. Hoffmann, E. K., L. O. Simonsen, and I. H. Lambert. 1984. Volume-induced increase of K+ and Cl~ permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J. Membr. Biol. 78:211–222.

    Article  PubMed  CAS  Google Scholar 

  329. Hoffmann, E. K., I. H. Lambert, and L. O. Simonsen. 1984. Separate K+ and Cl~ transport pathways activated by Ca2+ in Ehrlich mouse ascites tumour cells. J. Physiol. (Lond.) 357:62P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Knauf, P.A. (1987). Anion Transport in Erythrocytes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1943-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1943-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42697-1

  • Online ISBN: 978-1-4613-1943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics