Advertisement

The Study of Transport and Enzymatic Processes in Reconstituted Biological Systems

  • William P. Dubinsky

Abstract

Reconstitution of biological systems has proven a most valuable tool for the elucidation of multicomponent biochemical pathways. The study of a biological activity in both partially resolved or highly purified systems necessitates the assay of a specific, well-defined functional property of an enzyme or protein complex. In contrast to studies of soluble enzymatic complexes in homogeneous solution wherein the reactants and products may be readily distinguished from each other, the biological activity of a number of membrane processes is the translocation of a species from one compartment to another via passive, coupled, or active transport mechanisms. The biological activity may also be dependent upon a receptor—ligand interaction resulting in the change in a membrane permeability or the activation of an enzymatic complex. Each of these different functions, namely passive transport systems, receptor or voltage-dependent permeabilities, coupled transport, and the energy-transducing ATPases, is amenable to studies in reconstituted membranes.

Keywords

Sarcoplasmic Reticulum Oxidative Phosphorylation Acetylcholine Receptor Cytochrome Oxidase Adenosine Triphosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Racker, E., B. Violand, S. O’Neal, M. Alfonzo, and J. Telford. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophys. 198:470–477.PubMedCrossRefGoogle Scholar
  2. 2.
    Hokin, L. E. 1981. Reconstitution of “carriers” in artificial membranes.J. Membr. Biol. 60:77–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller, C., and E. Racker. 1979. Reconstitution of membrane transport functions. In: The Receptors. R. D. O’Brien, ed. Plenum Press, New York. pp. 1–31.Google Scholar
  4. 4.
    Loomis, W. F., and F. Lippmann. 1948. Reversible inhibition of the coupling between phosphorylation and oxidation. J. Biol. Chem. 172:807–808.Google Scholar
  5. 5.
    Hopfer, U., A. L. Lehninger, an. E. Thompson. 1968. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 59:489–490.CrossRefGoogle Scholar
  6. 6.
    Lardy, H. A., D. Johnson, and W. C. Murray. 1958. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylation and glycolytic systems. Arch. Biochem. Biophys. 78:587–597.PubMedCrossRefGoogle Scholar
  7. 7.
    Boyer, P. D., A. B. Falcone, and W. H. Harrison. 1954. Reversal and mechanism of oxidative phosphorylation. Nature (London) 174:401–402.CrossRefGoogle Scholar
  8. 8.
    Penefsky, H. S., M. E. Pullman, A. Datta, and E. Racker. 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. J. Biol. Chem. 235:3330–3336.PubMedGoogle Scholar
  9. 9.
    Cooper, C., and A. L. Lehninger. 1957. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. V. The adenosine triphosphate-phosphate exchange reaction. J. Biol. Chem. 224:561–578.PubMedGoogle Scholar
  10. 10.
    Horstman, L., and E. Racker. 1970. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J. Biol. Chem. 245:1336–1344.PubMedGoogle Scholar
  11. 11.
    Racker, E. 1963. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem. Biophys. Res. Commun. 10:435–439.PubMedCrossRefGoogle Scholar
  12. 12.
    Racker, E. 1962. Studies on factors involved in oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 48:1659–1663.PubMedCrossRefGoogle Scholar
  13. 13.
    Racker, E., and T. E. Conover. 1963. Multiple coupling factors in oxidative phosphorylation. Fed. Proc. 22:1088–1091.PubMedGoogle Scholar
  14. 14.
    Kagawa, Y., and E. Racker. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J. Biol. Chem. 241:2461–2466.PubMedGoogle Scholar
  15. 15.
    Arion, W. J., and E. Racker. 1970. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXIII. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase. J. Biol. Chem. 245:5186–5194.PubMedGoogle Scholar
  16. 16.
    Kagawa, Y., and E. Racker. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32P-adenosine triphosphate exchange. J. Biol. Chem. 241:5477–5487.Google Scholar
  17. 17.
    Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photo- synthetic phosphorylation. Biol. Rev. 41:445–502.PubMedCrossRefGoogle Scholar
  18. 18.
    Racker, E. 1972. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors. J. Membr. Biol. 10:221–235.PubMedCrossRefGoogle Scholar
  19. 19.
    Racker, E., and A. Kandrach. 1973. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXIX. Reconstitution of the third segment of oxidative phosphorylation. J. Biol. Chem. 248:5841–5847.PubMedGoogle Scholar
  20. 20.
    Ragan, G. F., and E. Racker. 1973. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXVIII. The reconstitution of the first site of energy conservation. J. Biol. Chem. 248:2563–2569.PubMedGoogle Scholar
  21. 21.
    Boyer, P. D. 1964. Carboxyl activation as a possible common reaction in substrate-level and oxidative phosphorylation and in muscle contraction. In: Oxidases and Related Redox Systems. T. E. King, H. S. Muson, and M. Morrison, eds. Wiley, New York. pp. 994–1017.Google Scholar
  22. 22.
    Racker, E., and W. Stoeckenius. 1974. Reconstitution of purple membrane vesicles catalyzing light driven proton uptake and adenosine triphosphate formation. J. Biol. Chem. 249:662–663.PubMedGoogle Scholar
  23. 23.
    Kagawa, Y., K. Ohno, M. Yoshida, Y. Takeuchi, and N. Sone. 1977. Proton translocation by ATPase and bacteriorhodopsin. Fed. Proc. 36:1815–1818.PubMedGoogle Scholar
  24. 24.
    Winget, G. D., N. Kanner, and E. Racker. 1977. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim. Biophys. Acta 460:490–499.PubMedCrossRefGoogle Scholar
  25. 25.
    Poyton, R. V., and G. Schatz. 1975. Cytochrome c oxidase from baker’s yeast. III. Physical characterization of isolated subunits and chemical evidence for two different classes of polypeptides. J. Biol. Chem. 250:752–761.PubMedGoogle Scholar
  26. 26.
    Werner, S. 1977. Preparation of polypeptide subunits of cytochrome oxidase from Neurospora crassa. Eur. J. Biochem. 79:103–110.PubMedCrossRefGoogle Scholar
  27. 27.
    Carroll, R. C., and E. Racker, 1977. Preparation and characterization of cytochrome c oxidase vesicles with high respiratory control. J. Biol. Chem. 252:6981–6990.PubMedGoogle Scholar
  28. 28.
    Malmstrom, B. G. 1979. Cychrome c oxidase structure and catalytic activity. Biochim. Biophys. Acta 549:281–303.PubMedGoogle Scholar
  29. 29.
    Hinkle, P. C., J. J. Kim, and E. Racker. 1972. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J. Biol. Chem. 247:1338–1339.PubMedGoogle Scholar
  30. 30.
    Hinkle, P. C. 1973. Electron transfer across membranes and energy coupling. Fed. Proc. 32:1988–1992.PubMedGoogle Scholar
  31. 31.
    Racker, E. 1972. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors. J. Membr. Biol. 10:221–235.PubMedCrossRefGoogle Scholar
  32. 32.
    Racker, E., and A. Kandrach. 1973. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXIX. Reconstitution of the third segment of oxidative phosphorylation. J. Biol. Chem. 248:5841–5847.PubMedGoogle Scholar
  33. 33.
    Wikstrom, M. K. F., and H. T. Suari. 1977. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta 462:347–361.PubMedCrossRefGoogle Scholar
  34. 34.
    Krab, K., and M. Wikstrom. 1978. Proton translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim. Biophys. Acta 504:200–214.PubMedCrossRefGoogle Scholar
  35. 35.
    Casey, R. P., M. Thelen, and A. Azzi. 1979. Dicyclohexylcar- bodiimide inhibits proton translocation by cytochrome c oxidase. Biochem. Biophys. Res. Commun. 87:1044–1051.PubMedCrossRefGoogle Scholar
  36. 36.
    Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. Curr. Top. Membr. Transp. 3:87–197.Google Scholar
  37. 37.
    Martonosi, A. 1968. Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J. Biol. Chem. 243:71–81.PubMedGoogle Scholar
  38. 38.
    Maennan, D. H. 1970. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 245:4508–4518.Google Scholar
  39. 39.
    Pick, U., and E. Racker. 1979. Inhibition of the (Ca2 +) ATPase from sarcoplasmic reticulum by decyclohexylcarbodiimide: Evidence for location of the Ca2 + binding site in a hydrophobic region. Biochemistry 18:108–113.PubMedCrossRefGoogle Scholar
  40. 40.
    le Maire, M., J. V. Moller, and C. Tanford. 1976. Retention of enzyme activity by detergent solubilized sarcoplasmic reticulum Ca2 + -ATPase.Biochemistry 15:2336–2342.PubMedCrossRefGoogle Scholar
  41. 41.
    Racker, E. 1972. Reconstitution of a calcium pump with phospholipids and a purified Ca2 + -adenosine triphosphatase from sarcoplasmic reticulum.J. Biol. Chem. 247:8198–8200.PubMedGoogle Scholar
  42. 42.
    Knowles, A. F., and E. Racker. 1975. Properties of a reconstituted calcium pump. J. Biol. Chem. 250:3538–3544.PubMedGoogle Scholar
  43. 43.
    Zimniak, P., and E. Racker. 1978. Electrogenicity of Ca2 + transport catalyzed by the Ca2 +-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 253:4631–4637.PubMedGoogle Scholar
  44. 44.
    Hazelbauer, G. L., and J.-P. Changeaux. 1974. Reconstitution of a chemically excitable membrane. Proc. Nat. Acad. Sci. USA 71: 1479–1483.PubMedCrossRefGoogle Scholar
  45. 45.
    Michealson, D. M., and M. A. Raftery. 1974. Purified acetylcholine receptor: Its reconstitution to a chemically excitable membrane. Proc. Nat. Acad. Sci. USA 71:4768–4772.CrossRefGoogle Scholar
  46. 46.
    Mamee, M. G., C. L. Weill, and A. Karlin. 1975. Purification of acetylcholine receptor from Torpedo californica and its incorporation into phospholipid vesicles. Ann. N.Y. Acad. Sci. 264:175–182.CrossRefGoogle Scholar
  47. 47.
    Epstein, M., and E. Racker. 1978. Reconstituion of car- bamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J. Biol. Chem. 253:6660–6662.PubMedGoogle Scholar
  48. 48.
    Huganir, R. L., M. A. Schell, and E. Racker. 1979. Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett. 108:155–160.CrossRefGoogle Scholar
  49. 49.
    Killian, P. C., C. R. Dunlap, P. Mueller, M. A. Schell, R. L. Huganir, and, E. Racker. 1980. Reconstitution of acetylcholine receptor from Torpedo californica with highly purified phospholipids: Effect of a-tocopherol, phylloquinone, and other terpenoid quinones.Biochem. Biophys. Res. Commun. 93:409–414.CrossRefGoogle Scholar
  50. 50.
    Ochoa, E. L. M., A. W. Dalziel, and M. G. Mamee. 1983. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. Biochim. Biophys. Acta 727:151–162.PubMedCrossRefGoogle Scholar
  51. 51.
    Criado, M., H. Eibl, and F. J. Barrantes. 1982. Effects of lipids on acetylcholine receptor: Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21:3622–3629.PubMedCrossRefGoogle Scholar
  52. 52.
    Wu, W. C. S., H. P. H. Moore, an. A. Raftery. 1981. Quanti ta- tion of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78:775–779.PubMedCrossRefGoogle Scholar
  53. 53.
    Lindstrom, J., R. Anholt, B. Einarson, A. Engel, M. Osame, and M. Montai. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles and study of agonist induced cation channel regulation. J. Biol. Chem. 255:8340–8350.PubMedGoogle Scholar
  54. 54.
    Reynolds, J. A., and A. Karlin. 1978. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17:2035–2038.CrossRefGoogle Scholar
  55. 55.
    Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In: Cell Surface Reviews. C. W. Cotman, G. Poste, and G. L. Nicholson, eds. Elsevier/North-Holland, Amsterdam, pp. 191–260.Google Scholar
  56. 56.
    Huginar, R. L., and E. Racker. 1980. Endogenous and exogenous proteolysis of the acetylcholine receptor from Torpedo calif ornica. J. Supramol. Struct. 14:13–19.CrossRefGoogle Scholar
  57. 57.
    Raftery, M. A., M. W. Hunkapillar, C. D. Strader, and L. E. Hood. 1980. Acetylcholine receptor: Complex of homologous sub- units. Science 208:1454–1456.PubMedCrossRefGoogle Scholar
  58. 58.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutini, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa. 1982. Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from NA sequence. Nature (London) 299:793–797.CrossRefGoogle Scholar
  59. 59.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, M. Takashima, S. Inayama, T. Miyata, and S. Numa. 1983. Primary structures of 0- and 7-subunit precursors of Torpedo californica acetylcholine receptor deduced from NA sequences. Nature (London) 301:251–255.CrossRefGoogle Scholar
  60. 60.
    Hoffmann, F. M. 1979. Solubilization and reconstitution of dopamine-sensitive adenylate cyclase from bovine caudate nucleus. J. Biol. Chem. 254:255–258.PubMedGoogle Scholar
  61. 61.
    Hoffmann, F. M. 1979. A new method for removing nonionic detergent that allows reconstitution of dopamine-sensitive adenylate cyclase. Biochem. Biophys. Res. Commun. 86:988–994.PubMedCrossRefGoogle Scholar
  62. 62.
    Kanner, B. I. 1978. Solubilization and reconstitution of the y- aminobutyric acid transporter from rat brain. FEBSLett. 89:47–50.CrossRefGoogle Scholar
  63. 63.
    Kramer, R., and M. Klingenberg. 1979. Reconstitution of adenine nucleotide transport from beef heart mitochondria. Biochemistry 18:4209–4215.PubMedCrossRefGoogle Scholar
  64. 64.
    Miyamoto, H., and E. Racker. 1980. Solubilization and partial purification of the Ca2 + /Na + antiporter from the plasma membrane of bovine heart. J. Biol. Chem. 255:2656–2658.PubMedGoogle Scholar
  65. 65.
    Hirata, H., S. Nobuhito, Y. Masasuke, and Y. Kagawa. 1977. Isolation of the alanine carrier from the membranes of a thermophilic bacterium and its reconstitution into vesicles capable of transport. J. Supramol. Struct. 6:77–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Fairclough, P., P. Malathi, H. Preiser, and R. K. Crane. 1979. Reconstitution into liposomes of glucose active transport from rabbit renal proximal tubule. Biochim. Biophys. Acta 553:295–306.PubMedCrossRefGoogle Scholar
  67. 67.
    Rothstein, A., Z. T. Cabantchik, M. Balshin, an. Juliano. 1975. Enhancement of anion permeability in lecithin vesicles by hydrophobic protein extracted from red cell membranes. Biochem. Biophys. Res. Commun. 64:144–150.PubMedCrossRefGoogle Scholar
  68. 68.
    Newman, M. J., D. L. Foster, T. H. Wilson, and H. R. Kaback. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256:11804–11808.PubMedGoogle Scholar
  69. 69.
    Tank, D. W., C. Miller, and W. W. Webb. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels fromTorpedo electroplax. Proc. Natl. Acad. Sci. USA 79:7749–7753.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin, S., and Spudich, J. A. 1974. Binding of cytochalasin B to a red cell membrane protein. Biochem. Biophys. Res. Commun. 61:1471–1475.PubMedCrossRefGoogle Scholar
  71. 71.
    Jung, C. Y., and L. M. Carlson. 1975. Glucose transport carrier in human erythrocyte membranes. J. Biol. Chem. 250:3217–3220.PubMedGoogle Scholar
  72. 72.
    Kasahara, M., and P. C. Hinkle. 1976. Reconstitution of d-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. Natl. Acad. Sci. USA 73:396–400.PubMedCrossRefGoogle Scholar
  73. 73.
    Kasahara, M., and P. C. Hinkle. 1977. Reconstitution and purification of the d-glucose transporter from human erythrocytes. J. Biol. Chem. 252:7384–7390.PubMedGoogle Scholar
  74. 74.
    Kahlenberg, A., and C. A. Zala. 1977. Reconstitution of d-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane. J. Supramol. Struct. 7:287–300.PubMedCrossRefGoogle Scholar
  75. 75.
    Wheeler, T. J., and P. C. Hinkle. 1981. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J. Biol. Chem. 256:8907–8914.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • William P. Dubinsky
    • 1
  1. 1.Department of Physiology and Cell BiologyUniversity of Texas Medical SchoolHoustonUSA

Personalised recommendations