The Fatty Acid-Anchored Four Heme Cytochrome of the Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas Viridis

  • K. A. Weyer
  • F. Lottspeich
  • W. Schäfer
  • H. Michel


The photosynthetic bacteria use a single photosystem for the absorption and conversion of solar energy. The simple structural organization of the bacterial photosynthetic reaction centers makes them useful for studying the light-driven electron transfer across the photosynthetic membrane. Photosynthetic reaction centers are complexes of pigments and integral membrane proteins. The well characterized reaction centers from the purple bacteria contain three protein subunits, which are called H (heavy), M (medium) and L (light) subunits according to their apparent molecular weights as determined by SDS-polyacrylamide gel electrophoresis1-3. In addition, the reaction centers from several purple bacteria, e.g. Rhodopseudomonas viridis contain a tightly bound cytochrome subunit, which re-reduces the photo-oxidized primary electron donor. Early work has shown that the cytochrome is of the c type and contains four (to five) heme groups. Redox potentiometry and spectroscopic studies led to the conclusion that two of these heme groups (“C558”) operate at +330 mV and the other two (“C553”) at -12mV4.5.


Purple Bacterium Heme Group Photosynthetic Reaction Center Reaction Center Complex Sixth Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feher, G. & Okamura, M.Y. (1978) in “The Photosynthetic Bacteria”, eds. Clayton, R.K. & Sistrom, W.R. ( Plenum Press, New York ), pp. 349–386.Google Scholar
  2. 2.
    Hoff, A.J. (1982) in “Molecular Biology, Biochemistry, and Biophysics”, Vol. 35, ed. Fong, F.K. ( Springer, Berlin ), pp. 80–151, 322–326.Google Scholar
  3. 3.
    Parson, W.W. (1982). Ann. Rev. Biophys. Bioeng. 11: 57–80.CrossRefGoogle Scholar
  4. 4.
    Thornber, J.P. & Olson, J.M. (1971) Photochem. Photobiol. 14: 329–341.CrossRefGoogle Scholar
  5. 5.
    Thornber, J.P., Dutton, P.L., Fajer, J., Forman, A., Holten, D., Olson, J.M., Parson, W.W., Prince, R.C., Tiede, D.M. & Windsor, T.W. (1977) in “Proc. of the Fourth International Congress on Photosynthesis”, eds. Hall, D.O., Coombs, J. & Goodwin, T.W., ( The Biochemical Society, London ), pp. 55–70.Google Scholar
  6. 6.
    Michel, H. (1982) J. Mol. Biol. 158: 567–572.CrossRefGoogle Scholar
  7. 7.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. (1984) J. Mol. Biol. 180: 385–398.CrossRefGoogle Scholar
  8. 8.
    Michel, H., Weyer, K.A., Gruenberg, H. & Lottspeich, F. (1985) EMBO J. 4: 1667–1672.Google Scholar
  9. 9.
    Michel, H., Weyer, K.A., Gruenberg, H., Dunger, I., Oesterhelt, D. & Lottspeich, F. (1986) EMBO J. 5: 1149–1158.Google Scholar
  10. 10.
    Weyer, K.A., Lottspeich, F., Gruenberg, H., Lang, F., Oesterhelt, D. & Michel, H., in preparationGoogle Scholar
  11. 11.
    Deisenhofer, J., Epp, Sinning, I. & Michel, H., in preparationGoogle Scholar
  12. 12.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. (1985) Nature 318: 618–624.CrossRefGoogle Scholar
  13. 13.
    For review see: Meyer, T. & Kamen, M.D. (1982) Adv. Prot. Chem. 35: 105–212.Google Scholar
  14. 14.
    For review see: Mathews, F.S. (1985) Prog. Biophys. molec. Biol. 45: 1–56.Google Scholar
  15. 15.
    Dayhoff, M.O., Barker, W.. & Hunt, L.T. (1983) Methods Enzymol. 91: 524–545.CrossRefGoogle Scholar
  16. 16.
    Shill, D.A. & Wood, P.M. (1984) Biochim. Biophys. Acta 764: 1–7Google Scholar
  17. 17.
    Michel, H. & Deisenhofer, J. (1986) in “Encyclopedia of Plant Physiology: Photosynthesis III”, Vol. 19, eds. Staehelin, A.C. & Arntzen, C.J., ( Springer, Berlin ), pp. 371–381.Google Scholar
  18. 18.
    Moore, G.R. & Williams, R.J.P. (1971) FEBS Lett. 79: 229–232.CrossRefGoogle Scholar
  19. 19.
    Dracheva, S.M., Drachev, L.A., Zaberezhnaya, S.M., Konstantinov, A.A., Semenov, A.Yu. & Skulachev, V.P. (1986) FEBS Lett. 205: 41–46.Google Scholar
  20. 20.
    Weyer, K.A., Schaefer, W., Lottspeich, F. & Michel, H. (1987) Biochemistry, in pressGoogle Scholar
  21. 21.
    Hantke, K. & Braun, V. (1973) Eur. J. Biochem. 34: 284–296.CrossRefGoogle Scholar
  22. 22.
    For review see: Duffaud, G.D., Lehnhardt, S.K., March P.E., & Inouye, M. (1985) Current Topics in Membranes and Transport 24: 65–105.Google Scholar
  23. 23.
    Lai, J.S., Sarvas, M., Brammar, W.J., Neugebauer, K., & Wu, H.C. (1981) Proc. Natl. Acad. Sci. USA 78: 3506–3510.CrossRefGoogle Scholar
  24. 24.Inouye, S., Franceschini, T., Sato, M., Itakura, K., & Inouye, M. (1983)EMB0 J. 2: 87–91.Google Scholar
  25. 25.
    Politt, S., Inouye, S., Inouye M. (1986) J. Biol. Chem. 261: 1835–1837.Google Scholar
  26. 26.
    Tanford, C. (1980) in “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, ed. Tanford, Ch. ( John Wiley & Sons, New York ), pp. 7.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. A. Weyer
    • 1
  • F. Lottspeich
    • 1
  • W. Schäfer
    • 1
  • H. Michel
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedWest Germany

Personalised recommendations