Regulation of the Expression of COI and COIII mRNAs in Rat Liver Mitochondria

  • Palmiro Cantatore
  • Flavio Fracasso
  • Angela Maria Serena Lezza
  • Maria Nicola Gadaleta


Recent work in several laboratories has produced a great deal of information on the structure of mitochondrial (mt) genomes of some mammalian species. MtDNA sequence of man, cow and mouse as well as large part of rat has been determined and the transcription products of these DNAs have been identified and mapped1,2. Mammalian mtDNA codes for 2 rRNAs, 11 mRNAs specifying 13 polypeptides for respiratory complexes and 22 tRNAs. Despite the complete transcription of both strands, the location of the structural genes is asymmetrical: the L-strand codes only for ND6 mRNA and eight tRNAs, while the rest of the genes is coded for by the H-strand. The tRNA genes are interspersed with almost absolute regularity among the rRNA and the mRNA coding sequences; this arrangement is consistent with a RNA processing mechanism in which the cloverleaf structure of the tRNA genes is used as a recognition signal for RNAse P-like enzymes involved in mtRNA processing. The gene organization of rat liver mtDNA is reported in Fig.1. The mammalian mt transcription starts from three initiation sites, one placed on the L-strand and two on the H-strand: this means that while the L-strand contains only one transcription unit, the H-strand is transcribed according to two different modes. Data obtained mainly in human cells3,4 have generated an H-strand transcription mechanism which implies that one transcription unit initiates 16 nt upstream of the tRNAPhe gene, giving rise to the two rRNAs 16S and 12S and to the tRNAPhe and tRNAVal. The other transcriptional event starts in proximity of the 5′ end of the 12S rRNA; it originates a polycistronic transcript that is processed in correspondence of the tRNA genes.


HeLa Cell tRNA Gene Transcription Unit BeLa Cell Mitochondrial Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Attardi, Animal mitochondrial DNA: an extreme, example of genetic economy, Int. Rev. Cytol. 93: 93 (1985).CrossRefGoogle Scholar
  2. 2.
    P. Cantatore and C. Saccone, Organization, structure and evolution of mammalian mitochondrial genes, Int. Rev. Cytol. (in press) (1987).Google Scholar
  3. 3.
    J. Montoya, R. Christiansen, D. Levens, M. Rabinowitz and G. Attardi, Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA, Proc. Natl. Acad. Sci. USA 79: 7195 (1982).CrossRefGoogle Scholar
  4. 4.
    D. D. Chang and D.A. Clayton, Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA, Cell 36: 635 (1984).CrossRefGoogle Scholar
  5. 5.
    R. Gelfand and G. Attardi, Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic species are metabolically unstable, Mol. Cell. Biol. 1: 497 (1981).Google Scholar
  6. 6.
    G. Attardi, P. Cantatore, A. Chomyn, S. Crews, R. Gelfand, C. Merkel, J. Montoya and D. Ojala, A comprehensive view of mitochondrial gene expression in human cell, in: “Mitochondrial Genes”, P. Slonimski, P. Borst and G. Attardi, 51, Cold Spring Harbor, N.Y. (1982).Google Scholar
  7. 7.
    P. Cantatore, M.N. Gadaleta and C. Saccone, Determination of some mitochondrial RNA s concentration in adult rat liver, Biochem. Biophys. Res. Commun. 13: 284 (1984).CrossRefGoogle Scholar
  8. 8.
    P. Cantatore, P. Loguercio Polosa, F. Fracasso, Z. Flagella and M.N. Gadaleta, Quantitation of mitochondrial RNA species during rat liver development: the concentration of cytochrome oxidase subunit I (Col) mRNA increases at birth, Cell Diff. 19: 125 (1986).CrossRefGoogle Scholar
  9. 9.
    G. A. Galau, E.D. Lipson, R.J. Britten and E.M. Davidson, Synthesis and turnover of polysomal mRNAs in sea urchin embryos, Cell 10: 415 (1977).CrossRefGoogle Scholar
  10. 10.
    C. V. Cabrera, J.J. Lee, J.W. Ellison, R.J. Britten and E.M. Davidson, Regulation of cytoplasmic mRNA prevalence in sea urchin embryos. Rates of appearance and turnover for specific sequences, J. Mol. Biol 174: 85 (1984).CrossRefGoogle Scholar
  11. 11.
    H. Sies, The use of perfusion of liver and other organs for the study of microsomal electron-transport and cytochrome P-450 systems, in: “Methods in Enzimology”, S. Fleischer and L. Packer, Vol.52:48, Academic Press, New York (1978).Google Scholar
  12. 12.
    P. Cantatore, Z. Flagella, F. Fracasso, A.M.S. Lezza, M.N. Gadaleta and A. de Montalvo, Synthesis and turnover rates of four rat liver mitochondrial RNA species, FEBS Letters 213: 144 (1987).Google Scholar
  13. 13.
    R. K. Bestwick, G.L. Moffett and C.K. Mathews, Selective expansion of mitochondrial nucleoside triphosphate pools in antimetabolite-treated He La cells, J. Biol. Chem. 257: 9300 (1982).Google Scholar
  14. 14.
    D. Neubert, C.T. Gregg, R. Bass and H.J. Merker, Occurrence and possible functions of mitochondrial DNA in animal development, in: “The Biochemistry of Animal Development”,R. Weber Vol.Ill:387, Academic Press, New York (1975).Google Scholar
  15. 15.
    J. England, P. Costantino and G. Attardi, Mitochondrial RNA and protein synthesis in enucleated african green monkey cells, J. Mol. Biol. 119: 455 (1978).CrossRefGoogle Scholar
  16. 16.
    R. A. Lansman and D.A. Clayton, Mitochondrial protein synthesis in mouse L-cells: effect of selective nicking of mitochondrial DNA, J. Mol. Biol. 99: 777 (1975).CrossRefGoogle Scholar
  17. 17.
    W. A. Guyette, R.J. Matusik and J.M. Rosen, Prolactin-mediated transcription and post-transcriptional control of casein gene expression, Cell 17: 1013 (1979).CrossRefGoogle Scholar
  18. 18.
    H. F. Lodish and B. Small, Different lifetimes of reticulocyte messenger RNA, Cell 7: 59 (1976).CrossRefGoogle Scholar
  19. 19.
    L. M. Hereford, M.A. Osley, J.R. Ludwig and C.S. McLaughlin, Cell-cycle regulation of yeast histone mRNA, Cell 24: 367 (1981).CrossRefGoogle Scholar
  20. 20.
    J. N. Williams Jr., A comparative study of cytochrome ratios in mitochondria from organs of the rat, chicken, and guinea pig, Biochem. Biophys. Acta, 162: 175 (1968).CrossRefGoogle Scholar
  21. 21.
    J. F. Hare, E. Ching and G. Attardi, Isolation, subunit composition and site of synthesis of human cytochrome c oxidase, Biochemistry 19: 2023 (1980).CrossRefGoogle Scholar
  22. 22.
    D. M. Mueller and G.S. Getz, Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression, J. Biol. Chem. 261: 11816 (1986).Google Scholar
  23. 23.
    C. H. Kim and J.R. Warner, Messenger RNA for ribosomal proteins in yeast, J. Mol. Biol. 165: 79 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Palmiro Cantatore
    • 1
    • 2
  • Flavio Fracasso
    • 1
    • 2
  • Angela Maria Serena Lezza
    • 1
    • 2
  • Maria Nicola Gadaleta
    • 1
    • 2
  1. 1.Dipartimento di Biochimica e Biologia MolecolareUniversità di BariItaly
  2. 2.Centro di Studio sui Mitocondri e Metabolismo EnergeticoConsiglio Nazionale delle RicercheBariItaly

Personalised recommendations