Superexchange Mediated Superconductivity in the Single Band Hubbard Model

  • S. Doniach
  • P. J. Hirschfeld
  • M. Inui
  • A. E. Ruckenstein


We discuss the physics of BCS pairing in the strongly correlated single band Hubbard model close to half-filling. In contrast to spin-fluctuation mediated pairing of importance in 3 He and heavy Fermion systems, we argue that the superexchange mediated pairing proposed by Anderson is stabilized by short range antiferromagnetic spin ordering. A mean field calculation shows that coexistence of antiferromagnetism and superconductivity is a stable solution for a doped Mott-Hubbard system.


Hubbard Model Coulomb Repulsion Pairing Mechanism Heavy Fermion System Resonant Valence Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.G. Bednorz, and K.A. Muller, Z.Phys. B64, 189 (1986).CrossRefGoogle Scholar
  2. [2]
    see recent review by T.M. Rice, PreprintGoogle Scholar
  3. [4]
    D. Vaknin, S.K. Sinha, D.E. Moncton, D.C. Johnston, J. Newsam, and H. King, preprint; S. Mitsuda, G. Shirani, S.K. Sinha, D.C. Johnston, M.S. Alvarez, D. Vaknin, and D.E. Monkton, preprint; T. Freltoft, J.P. Remeika, D.E. Moncton, A.S. Cooper, J.E. Fischer, D. Harshman, S.K. Sinha, and D. Vaknin, preprint; D.C. Johnston, J.P. Stokes, D.P. Goshorn, and J.T. Lewandowski, preprint.Google Scholar
  4. [5]
    G. Baskaran, Z. Zou, and P.W. Anderson, to be published in Solid State Comm.Google Scholar
  5. [6]
    A.E. Ruckenstein, P.J. Hirschfeld, and J.Appel, Phys.Rev.B July 1, 1987.Google Scholar
  6. [7]
    M. Inui, S. Doniach, P.J. Hirschfeld, and A.E. Ruckenstein, submitted to Phys.Rev. Lett.Google Scholar
  7. [8]
    P.W. Anderson, Phys.Rev. 115, 2 (1959).CrossRefGoogle Scholar
  8. [9]
    J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys.Rev.Lett. 55, 418 (1985).CrossRefGoogle Scholar
  9. [10]
    J.A. Yarmoff, D.R. Clarke, W. Drube, U.O. Karlsson, A. Taleb- Ibrahimi, and F.J. Himpsl, Phys.Rev.B, Rapid Communications, to be published.Google Scholar
  10. [11]
    J.E. Hirsch, Phys.Rev.Lett. 54, 1317 (1985); C. Gros, R. Joynt, and T.M. Rice to be published.CrossRefGoogle Scholar
  11. [12]
    J.Kanamori, J. Theoret. Physics (Kyoto) 30, 275 (1963).CrossRefGoogle Scholar
  12. [13]
    W.F. Brinkman, J. Serene, and P.W. Anderson, Phys.Rev.A 10, 2386 (1974).CrossRefGoogle Scholar
  13. [14]
    Grabowski and L.J.Sham, these proceedings.Google Scholar
  14. [15]
    Y.Nagaoka Phys.Rev. 147, 392 (1966).CrossRefGoogle Scholar
  15. [16]
    J.E. Hirsch, preprint; B. Shraiman, and E.D. Siggia, private communication; A.E. Ruckenstein, unpublished.Google Scholar
  16. [17]
    G. Kotliar, and A.E. Ruckenstein, Phys.Rev.Lett. 57, 1362 (1986).CrossRefGoogle Scholar
  17. [18]
    C.M. Varma, S. Scmitt-Rink, and E. Abrahams, see these proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Doniach
    • 1
  • P. J. Hirschfeld
    • 1
    • 2
  • M. Inui
    • 3
  • A. E. Ruckenstein
    • 2
  1. 1.Dept of Applied PhysicsStanford UniversityStanfordUSA
  2. 2.Dept of PhysicsUniversity of California at San DiegoLa JollaUSA
  3. 3.Dept of PhysicsStanford UniversityStanfordUSA

Personalised recommendations