Oxygen Ordering and Interfacial Superconductivity at Twin Boundaries in a Landau-Ginzburg Superconductor Oxide Model

  • C. Varea
  • A. Robledo


We analyse the superconducting critical behavior of a model YBa2Cu3O9-y twinned orthorhombic crystal. For a Landau-Ginzburg free energy with coupled superconducting and oxygen-vacancy order parameters, the symmetry-breaking twin boundaries induce a purely interfacial superconducting transition at T c twin > Tco, within a range of oxygen bulk compositions. Bulk superconductivity occurs at T < Tco below the oxygen-vacancy ordering temperature TO.


Oxygen Vacancy Twin Boundary Oxygen Deficiency Antiphase Boundary Bulk Superconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.K. Wu, J.R. Ashburn, C.J. Torgn, P.H. Hör, R.L. Meng, L.Gao, Z. J. Huang, Y.O. Wang, and C.W. Chu, Phys. Rev. Lett. 58: 908 (1987); P.H. Hör, L. Gao, R.L. Meng, Z.J Huang, Y.Q. Wang, K. Foster, J. Vassilious, C.W. Chu, M.K. Wu, J.R. Ashburn, and C.J. Torgn, Phys. Rev. Lett 58: 911 (1987).Google Scholar
  2. 2.
    R.J. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, E.A. Rietman, S. Zahurak, and G.P. Espinosa, Phys. Rev. Lett. 58: 1676 (1987).Google Scholar
  3. 3.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Prewitt, N.L. Ross, H.K. Mao, C.G. Hadidiacos, P.H. Hör, R.L. Meng and C.W. Chu, Phys. Rev. B35: 7238 (1987).Google Scholar
  4. 4.
    Y. Syono, M. Kikuchi, K. Oh-ishi, K. Hirage, H. Arai, Y. Matsui, N. Kobayashi, T. Sasaoka, and Y. Muto, Japan J. Appl. Phys. Lett. 26: L498 (1987).Google Scholar
  5. 5.
    A. Ourmazd, J.A. Rentschier, J.C.H. Spence, M.O’Keeffe, R. J. Graham, D.W. Johnson Jr., W.W. Rhodes, Nature 327: 308 (1987).Google Scholar
  6. 6.
    J.E. Greedan, A.O1 Reilly and C.V. Stager, Preprint.Google Scholar
  7. 7.
    G.S. Ansell, in Physical Metalurgy, R. W. Cahn, ed., (North Holland, Amsterdam, 2nd ed. 1977 ) p. 1184.Google Scholar
  8. 8.
    K. Murata, H. Ihara, M. Tokumoto, M. Hirabayashi, N. Terada, K. Senzaki, and Y. Kimmura, Japan J. Appl. Phys. Lett. 26: L473 (1987).Google Scholar
  9. 9.
    R.E. Somekh, M.G. Blanure, Z.H. Barber, K. Butler, J.H. James, G.W. Morris, E.J. Tomlinson, A.P. Schwarzenberger, W.M. Stobbs and J.E. Evetts, Nature 326: (1987).Google Scholar
  10. 10.
    R. Takita, T. Ippsohi, T. Uchino, T. Gochou and K. Masuda, Japan J. Appl. Phys. Lett. 26: L506 (1987).Google Scholar
  11. 11.
    K. Binder, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz Eds. (Academic, N.Y., 1986 ) Vol. 8, Cap. 1.Google Scholar
  12. 12.
    S. Leibler and L. Peliti, Phys. Rev B29: 1253 (1984).Google Scholar
  13. 13.
    C. Varea and A. Robledo, Phys. Rev. B36: (1987).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. Varea
    • 1
  • A. Robledo
    • 1
  1. 1.Facultad de QuimicaUniversidad Nacional Autónoma de MéxicoMexico, D.F.Mexico

Personalised recommendations