Advertisement

Structure and Chemistry of Interfaces in Silicon Carbide-Containing Materials

  • R. F. Davis
  • C. H. CarterJr.
  • S. R. Nutt
  • K. L. More
  • S. Chevacharoenkul
Part of the Materials Science Research book series (MSR, volume 21)

Abstract

Transmission electron microscopy (TEM) and other techniques were employed to investigate the character of high and low angle boundaries and interfaces in several α-SiC-containing multiphase materials. In reaction-bonded SiC, the reaction of Si vapor with excess free C contained in an α-SiC matrix caused epitaxial growth of additional α-SiC and resultant sub-grain boundary formation. Climb-controlled deformation above 1773K caused the formation of additional, unique subboundaries in this material. In sintered α-SiC containing B and C, the occasionally predicted and reported amorphous boundary phase was not discerned in high resolution TEM or Auger analyses. The addition of MgO to an β-SiC whisker-containing Si3N4 composite resulted both in the formation of an amorphous phase and in the epitaxial crystallization of an MgO-containing silicate phase. Finally, ruby or eximer laser annealing of Ni-coated SiC caused the melting of the Ni and the diffusion of SiC into this molten phase. By comparison, the ion mixing of the Ni via the implantation of Si+ through this metal layer resulted in the sequential formation of numerous layers of varying chemistry. The following sections describe the several forms of these interphase regions and their effect on the structural properties of the various materials.

Keywords

High Resolution Transmission Electron Microscopy Ruby Laser Mixed Surface Layer Moire Fringe Scanning Auger Microprobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Weaver, U.S. Pat. No. 4,019,913, April 26, 1977.Google Scholar
  2. 2.
    G. R. Sawyer and T. F. Page, Microstructural Characterization of ‘REFEL’ (Reaction Bonded) Silicon Carbides, J. Mater. Sci., 13: 885 (1978).CrossRefGoogle Scholar
  3. 3.
    C. H. Carter, Jr., R. F. Davis and J. Bentley, Kinetics and Mechanisms of High Temperature Creep in Silicon Carbide: I, Reaction-Bonded, J. Am. Ceram. Soc. 67: 409 (1984).CrossRefGoogle Scholar
  4. 4.
    R. F. Davis, J. E. Lane, C. H. Carter, Jr., J. Bentley, W. H. Wadlin, D. P. Griffis, R. W. Linton and K. L. More, Scann. Electron. Micros., 1984/III: 1161 (1984).Google Scholar
  5. 5.
    K. L. More, C. H. Carter, Jr., J. Bentley, W. H. Wadlin, L. LaVanier and R. F. Davis, Occurrence and Distribution of Boron-Containing Phases in Sintered α-SiC, accepted for publication by the J. Am. Ceram. Soc.Google Scholar
  6. 6.
    S. Prochazka in “Special Ceramics 6,” P. Popper, ed., British Ceramic Research Assoc., Stoke-on-Trent, (1975) p. 171.Google Scholar
  7. 7.
    C. Greskovich and J. H. Rosolowski, Sintering of Covalent Solids, J. Am. Ceram. Soc. 59: 336 (1976).CrossRefGoogle Scholar
  8. 8.
    H. Suzuki and T. Hase, in “Proceedings of the International Symposium of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics,” S. Somiya and S. Saito, eds., Gakujuts Bunken Fukyu-kai, Ookayama, Japan (1979), p. 345.Google Scholar
  9. 9.
    T. Hase, H. Suzuki and I. Tomizuka, Microstructure Development of Undoped Compact of β-SiC during Heating, Yogyo Kyokai Shi 87: 317 (1979).Google Scholar
  10. 10.
    T. Hase and H. Suzuki, Initial-Stage Sintering of β-SiC with Concurrent Boron and Carbon Additions, Yogyo Kyokai Shi 88: 225 (1980).Google Scholar
  11. 11.
    H. Suzuki and T. Hase, Boron Transport and Change of Lattice Parameter During Sintering of β-SiC, J. Am. Ceram. Soc. 63: 349 (1980).CrossRefGoogle Scholar
  12. 12.
    F. F. Lange and T. K. Gupta, Sintering of SiC with Boron Compounds, J. Am. Ceram. Soc. 59: 537 (1976).CrossRefGoogle Scholar
  13. 13.
    A. H. deA. Bressiani, Das Verdichtungsverhalten von β-SiC beim Heisspressen mit verschiedenen Sinterhilfen, Doktors der Naturwissenschaften Thesis, University of Stuttgart (1984) p. 92.Google Scholar
  14. 14.
    D. Stutz, S. Prochaska, J. Lorenz and G. Petzow, Observations on Sintering of Silicon Carbide with Boron and Aluminum Additions, paper submitted for publication.Google Scholar
  15. 15.
    R. Hamminger, G. Grathwohl and F. Thummler, Microanalytical Investigation of Sintered SiC, Part 2: Study of the Grain Boundaries of Sintered SiC by High Resolution Auger Electron Spectroscopy, J. Mat. Sc. 18: 3154 (1983).CrossRefGoogle Scholar
  16. 16.
    Y. Tajima and W. D. Kingery, Grain Boundary Segregation in Aluminum-doped SiC, J. Mat. Sc. 17: 2289 (1982).CrossRefGoogle Scholar
  17. 17.
    R. Hamminger, G. Grawthwohl and F. Thummler, Microanalytical Investigation of Sintered SiC, Part I: Bulk Materials and Inclusions, J. Mat. Sc. 18: 353 (1983).CrossRefGoogle Scholar
  18. 18.
    R. Hamminger, G. Grathwohl and F. Thummler, Microstructural Analysis of (A1,C)- and (B, C)-doped Sintered SiC, Sci. Ceramics 12: 425 (1984).Google Scholar
  19. 19.
    a) P. F. Becher and G. C. Wei, Toughening Behavior in SiC-Whisker-Reinforced Alumina, J. Am. Ceram. Soc. 67: C267 (1984). (b) G. C. Wei and P. F. Becher, Development of SiC-Reinforced Ceramics, Am. Ceram. Soc. Bull. 64: 298 (1985).Google Scholar
  20. 20.
    J. G. Lee and I. B. Cutler, Formation of Silicon Carbide From Rice Hulls, Am. Ceram. Soc. Bull. 54: 195 (1975).Google Scholar
  21. 21.
    J. V. Milewski, Growth of Beta-SiC Whiskers by the VLS Process, J. Mat. Soc. 20: 1160 (1985).CrossRefGoogle Scholar
  22. 22.
    P. D. Shalek, J. J. Petrovic, G. F. Hurley and F. D. Gac, Hot-pressed SiC Whisker/Si3N4 Matrix Composites, Am. Ceram. Bull. 65: 351 (1986).Google Scholar
  23. 23.
    K. L. More and R. F. Davis, Observed Changes in Fracture Strength Following Laser Irradiation and Ion Beam Mixing of Ni Overlayers on Sintered Alpha-SiC, to be published in the “Proceedings of the Fourth International Symposium on the Fracture Mechanics of Ceramics,” held at Virginia Polytechnic Institute and State University, June 17–19, 1985.Google Scholar
  24. 24.
    K. L. More and R. F. Davis, Non-equilibrium Surface Conditions and Microstructural Changes Following Pulsed Laser Irradiation and Ion Beam Mixing of Ni Overlayers on Sintered Alpha-SiC, to be published in the “Proceedings of the International Conference on the Tailoring of Multiphase Ceramics,” held at The Pennsylvania State University, July 19–21, 1985.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. F. Davis
    • 1
  • C. H. CarterJr.
    • 1
  • S. R. Nutt
    • 2
  • K. L. More
    • 3
  • S. Chevacharoenkul
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Division of EngineeringBrown UniversityProvidenceUSA
  3. 3.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations