Selected Sintering Conditions for SiC and Si3N4 Ceramics

  • C. Greskovich
  • S. Prochazka
Part of the Materials Science Research book series (MSR, volume 21)


Typical sintering conditions and microstructures of a few selected compositions of SiC and Si3N4 are presented for these two important structural ceramics. Some significant changes in microstructure and chemical reactions that occur at high temperatures in different atmospheres during sintering are reviewed. Emphasis is placed on identifying and controlling undesirable chemical reactions that compete with the densification process by coarsening the pore/grain microstructures.


Relative Density Pressureless Sinter Pore Growth Si3N4 Ceramic General Electric Corporate Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Stutz, S. Prochazka, J. Lorenz, Sintering and Microstructure Formation of ß-SiC, J. Am. Ceram. Soc. 68: 479 (1985).CrossRefGoogle Scholar
  2. 2.
    S. Shinozaki, R. M. Williams, B. N. Juterbock, W. T. Donlon, J. Hangas, C. R. Peters, Microstructural Developments in Pressureless-Sintered ß-SiC Materials with Al, B and C Additions, Am. Ceram. Soc. Bull. 64: 1389 (1985).Google Scholar
  3. 3.
    W. Bocker, H. Landfermann, H. Hausner, Sintering of Alpha SiC with Additions of Aluminum, Powder Metall. Int. 10: 87 (1978).Google Scholar
  4. 4.
    J. T. Smith, C. L. Quackenbush, A Study of Sintered Si3N4 Compositions with Y2O3 and Al2O3 Densification Additives, in “Factors in Densificación and Sintering of Oxide and Non-Oxide Ceramics”, S. Somiya and S. Saito, ed., Gakujutsu Bunken Fukyu-kai, Tokyo (1978).Google Scholar
  5. 5.
    C. L. Quackenbush, J. T. Smith, J. T. Neil, K. W. French, Sintering Properties and Fabrication of Si3N4+Y2O3 Based Ceramics, in “Progress in Nitrogen Ceramics”, F. L. Riley, ed., Martinus Nijhoff Publishers, Boston (1983).Google Scholar
  6. 6.
    R. J. Lumby, E. Butler, M. H. Lewis, Lucas Sylons-Composition, Structure, Properties and Uses, in “ibid”.Google Scholar
  7. 7.
    A. Giachello, P. Popper, Post-Sintering of RBSN, Ceramurgia Int. 5: 110 (1979).CrossRefGoogle Scholar
  8. 8.
    J. A. Mangels, G. J. Tennenhouse, Densification of Reaction Bonded Si3N4, Am. Ceram. Soc. Bull. 59: 356 (1980).Google Scholar
  9. 9.
    S. Prochazka, The Role of B and C in the Sintering of SiC, in “Special Ceramics 6”, P. Popper, ed., British Ceramic Research Association, Stoke-on-Trent, England (1975).Google Scholar
  10. 10.
    H. Suzuki, T. Hase, Some Experimental Considerations on the Mechanism of Pressureless Sintering of SiC, in “Factors in Densification and Sintering of Oxide and Non-oxide Ceramics”, S. Somiya and S. Saito, ed., Gakujutsu Bunken Fukyu-kai, Tokyo (1978).Google Scholar
  11. 11.
    C. Greskovich, J. H. Rosolowski, Sintering Covalent Solids, J. Am. Ceram. Soc. 59: 336 (1976).CrossRefGoogle Scholar
  12. 12.
    K. M. Friederich, R. L. Coble, Influence of Boron on Chemical Inter-diffusion in SiC During Conversion of Si Fibers to SiC, ibid. 66: C-141 (1983).Google Scholar
  13. 13.
    S. Prochazka, R. M. Scanlan, The Effect of B and C on the Sintering of SiC, ibid. 58: 72 (1975).Google Scholar
  14. 14.
    M. Rühle, G. Petzow, in “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”, J. Pask and A. Evans, ed., Plenum Press, New York (1981).Google Scholar
  15. 15.
    J. Drowart, G. deMaria, Thermodynamic Study of the Binary System C-Si Using Mass Spectrometry, in “Silicon Carbide”, J. R. O’Connors and J. Smithens, ed., Pergamon Press, New York (1960).Google Scholar
  16. 16.
    S. Prochazka, C. A. Johnson, R. A. Giddings, Atmosphere Effects in the Sintering of SiC, in “Factors in Densification and Sintering of Oxide and Non-oxide Ceramics”, S. Somiya and S. Saito, ed., Gakujutsu Bunken Fukyu-kai, Tokyo (1978).Google Scholar
  17. 17.
    S. Shinozaki, R. R. Kinsman, Evolution of Microstructure in Polycrystalline SiC, in “Processing of Crystalline Ceramics, Mat. Sei. Res. 11”, H. Palmour et al, ed., Plenum Press, New York (1978).Google Scholar
  18. 18.
    A. H. Heuer, C. A. Fryberg, L. U. Ogbudji, T. E. Mitchell, S. Shinozaki, ß-a Transformation in Polycrystalline SiC: I Microstructural Aspects, J. Am. Ceram. Soc. 61: 412 (1978).CrossRefGoogle Scholar
  19. 19.
    S. Shinozaki, K. R. Kinsman, Influence of Structure on Morphology in Polycrystalline SiC, in “Ceramic Microstructures ’76”, R. M. Fulrath and J. A. Pask, ed., Westview Press, Boulder, Colorado (1977).Google Scholar
  20. 20.
    C. A. Johnson, S. Prochazka, Microstructures of Sintered SiC, in “ibid”.Google Scholar
  21. 21.
    W. Bocker., H. Hausner, The Influence of B and C Additions on the Microstructure of Sintered α-SiC, Powder Metal 11: 83 (1979).Google Scholar
  22. 22.
    S. Prochazka, Abnormal Grain Growth in Polycrystalline SiC, in “Silicon Carbide 1973”, R. C. Marshal et al, ed., University Press, S. C. (1974).Google Scholar
  23. 23.
    E. Gugel, G. Leimer, Pressureless Sintering of SiC, in “Ceramics for Turbine Engine Applications”, AGARD Conference Proceedings No. 276, Harford House, London (1980).Google Scholar
  24. 24.
    H. T. Tanaka, Y. Inomata, K. Hara, H. Hasegawa, Normal Sintering of Al-doped ß-SiC, J. Mat. Sci. Letters 4: 315 (1985).CrossRefGoogle Scholar
  25. 25.
    Y. A. Vodakov, E. N. Mokhov, Diffusion and Solubility of Impurities in SiC, in “Silicon Carbide 1973”, R. C. Marshal, ed., Univrsity Press, S. C. (1974).Google Scholar
  26. 26.
    L. J. Kroko, A. G. Milnes, Diffusion of Nitrogen into SiC Single Crystals, Solid State Electronics 9: 1125 (1966).CrossRefGoogle Scholar
  27. 27.
    R. F. Coe, R. J. Lumby, M. F. Pawson, Some Properties and Applications of Hot Pressed Si3N4, in “Special Ceramics 5”, Proceedings Brit. Ceram. Soc., No. 15, P. Popper, ed., The British Ceram. Res. Association, Manchester (1972).Google Scholar
  28. 28.
    C. Greskovich, Preparation of High Density Si3N4. by a Gas-Pressure Sintering Process, J. Am. Ceram. Soc. 64: 725 (1981).CrossRefGoogle Scholar
  29. 29.
    R. L. Tsai, R. Raj, Dissolution Kinetics of.ß-Si3N4 in an Mg-Si-O-N Glass, ibid. 65: 270 (1982).Google Scholar
  30. 30.
    P. Greil and J. Weiss, Evaluation of Microstructure of ß-SiAlON Solid Solution Materials Containing Different Amounts of Amorphous Grain Boundary Phase, J. Mat. Sci. 17: 1571 (1982).CrossRefGoogle Scholar
  31. 31.
    G. R. Terwilliger, F. F. Lange, Pressureless Sintering of Si~N,, ibid. 10: 1169 (1975).Google Scholar
  32. 32.
    C. Greskovich and S. Prochazka, Stability of Si3N4, and Liquid Phases During Sintering, J. Am. Ceram. Soc. 64: C-96 (1981).CrossRefGoogle Scholar
  33. 33.
    F. F. Lange, Volatilization Associated with the Sintering of Polyphase Si N Materials, ibid. 65: C-120 (1982).Google Scholar
  34. 34.
    M. Mitomo, Pressure Sintering of Si3N4, ibid. 11: 1103 (1976).Google Scholar
  35. 35.
    A. Giachello, P. C. Martinengo, G. Tommasini, P. Popper, Sintering of Si2N4 in a Powder Bed, J. Mat. Sci. 14: 2825 (1979).Google Scholar
  36. 36.
    S. Baik, R. Raj, Effect of Si Activity on Liquid Phase Sintering of Nitrogen Ceramics, J. Am. Ceram. Soc. 68: C-124 (1985).CrossRefGoogle Scholar
  37. 37.
    C. Greskovich, W. D. Pasco, G. D. Quinn, thermomechanical Properties of a New Composition of Sintered Si3N4, Am. Ceram. Soc. Bull. 63: 1165 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. Greskovich
    • 1
  • S. Prochazka
    • 1
  1. 1.General Electric Corporate Research and DevelopmentSchenectadyUSA

Personalised recommendations