HREM Study of a Tetragonal → Monoclinic Martensitic Interface in a Y2O3-Stabilized ZrO2 Alloy

  • R. Chaim
  • P. A. Labun
  • V. Lanteri
  • A. H. Heuer
Part of the Materials Science Research book series (MSR, volume 21)


High resolution electron microscopy was used to study a martensitic interface in a Y2O3-stabilized ZrO2 alloy. The interface was found to be dislocated; the dislocations have a component along <111> t and are spaced ~14 (111) t planes. These dislocations are believed to be misfit or interface dislocations, present to relieve strains at the t/m interface. This interface thus cannot be the invariant plane strain interface calculated by the crystallographic theories of martensitic transformations.


Habit Plane Lattice Image High Resolution Electron Microscopy Interface Dislocation High Resolution Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. C. Subbarao, H. S. Maiti and K. K. Srivastava, Phys. Stat. Sol. A21 (1974) 9–40.CrossRefGoogle Scholar
  2. 2.
    G. K. Bansal and A. H. Heuer, Acta Met. 20 (1972) 1281, ibid, 22 (1974) 409.Google Scholar
  3. 3.
    D. K. Smith and H. W. Newkirk, Acta Cryst. 18 (1965) 983.CrossRefGoogle Scholar
  4. 4.
    G. M. Volten, Acta Cryst. 17 (1964) 763–765.CrossRefGoogle Scholar
  5. 5.
    S. T. Buljan, H. A. McKinstry and V. S. Stubican, J. Am. Ceram. Soc. 59 (1976) 351.CrossRefGoogle Scholar
  6. 6.
    R. N. Patil and E. C. Subbarao, J. Appl. Cryst. 2 (1969) 281, ibid. Acta Cryst. A26 (1970) 535.Google Scholar
  7. 7.
    J. E. Bailey, Proc. Roy. Soc. London, A279 (1964) 395.CrossRefGoogle Scholar
  8. 8.
    W. M. Kriven, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, Eds. A.H. Heuer and L.W. Hobbs, ACS Pub., Columbus (1981) p. 168.Google Scholar
  9. 9.
    R. Chaim, A. H. Heuer and D. G. Brandon, J. Am. Ceram. Soc. 69 (1986) 243.CrossRefGoogle Scholar
  10. 10.
    A. H. Heuer, R. Chaim and H. Bestgen, to be published.Google Scholar
  11. 11.
    M. A. O’Keefe and P. R. Buseck, Trans. Am Cryst. Assoc. 15 (1979) 27.Google Scholar
  12. 12.
    J. M. Cowley and A. F. Moodie, Acta Cryst. 10 (1957a) 609.CrossRefGoogle Scholar
  13. 13.
    R. Chaim, D. G. Brandon and A. H. Heuer, Acta Met. 34 (1986) 1933.CrossRefGoogle Scholar
  14. 14.
    R. Ruh K. S. Madiyasni, P. G. Valentine and H. O. Bielstein, J. Am. Ceram. Soc. 67 (1984) C-190.Google Scholar
  15. 15.
    A. Choudhry and A. G. Crocker, in “Advances in Ceramic”, Vol. 12, Science and Technology of Zirconia II, Eds. N. Claussen, M. Rühle and A. H. Heuer, ACS Pub., Columbus (1984) p. 46.Google Scholar
  16. 16.
    P.M. Kelly and C.J. Ball, J. Am. Ceram. Soc. 69 [3] (1986) 259.CrossRefGoogle Scholar
  17. 17.
    W. M. Kriven, V. L. Fraser and S. V. Kennedy, ref. 8, p. 82.Google Scholar
  18. 18.
    H. Brooks, in “Metal Interfaces, American Society for Metals, Metals Park”, Oh. (1957) p. 20.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. Chaim
    • 1
  • P. A. Labun
    • 1
  • V. Lanteri
    • 1
  • A. H. Heuer
    • 1
  1. 1.Department of Metallurgy and Materials ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations