Skip to main content

Chemical Interactions of Acidic Precipitation and Terrestrial Vegetation

  • Chapter
Phytochemical Effects of Environmental Compounds

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 21))

  • 100 Accesses

Abstract

Acidic precipitation — wet or frozen precipitation with a H+ concentration greater than 2.5 ueq liter-1 (equivalent to a pH of about 5.6) — is a significant air pollution problem in North America and Europe. The northeastern portion of the United States is at the center of the high acidic rainfall area in North America.1 The high H+ concentration of precipitation (rain, snow, fog, sleet, and mist) in the northeastern United States is explained by the presence of strong acids. Sulfuric acid contributes a portion of the acidity,2–4 and nitrate and chloride are significant anion components of the total acidity in precipitation.5,6 A significant amount of sulfur dioxide emitted into the atmosphere is converted into sulfuric acid and various aerosols of ammonium sulfate. Particulate sulfur compounds and sulfur oxides may be incorporated into precipitation with conversion to H2SO4.2 About 90% of the sulfur in the atmosphere of the northeastern United States is contributed by antrhopogenic sources.7 An estimate for nitrogen inputs into the atmosphere of the Adirondack Mountain Region indicates that 34% of the anions in rain could be attributed to nitrates.8 Acidic precipitation is only a portion of the total acidity brought to the earth’s surface from the atmosphere. Dry fall plus acidic precipitation is termed acidic deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EVANS, L.S., G.R. HENDREY, G.J. STENSLAND, D.W.JOHNSON, A.J. FRANCIS. 1981. Considerations of an air quality standard for acidic precipitation. Water Air Soil Pollut. 16: 469–509.

    Article  Google Scholar 

  2. LIKENS, G.E., F.H. BORMANN, N.M. JOHNSON. 1972.Acid rain. Environment 14: 33–44.

    Google Scholar 

  3. NORDO, J. 1976. Long range transport of air pollutants in Europe and acid precipitation in Norway. Water Air Soil Pollut. 6: 199–227.

    Article  Google Scholar 

  4. ODEN, S. 1976. The acidity problem -An outline of concepts. Water Air Soil Pollut. 6: 137–166.

    Article  Google Scholar 

  5. JACOBSON, J.S., L.I. HELLER, P. VAN LEUKEN. 1976.Acidic precipitation at a site within the northeastern conurbation. Water Air Soil Pollut. 6: 339–349.

    Article  Google Scholar 

  6. YUE, G.K., V.A. MOHNEN, C.S. KIANG. 1976. A mechanism for hydrochloric acid production in cloud. Water Air Soil Pollut. 6: 277–294.

    Article  Google Scholar 

  7. GALLOWAY, J.N., D.M. WHELPDALE. 1980. An atmospheric sulfur budget for eastern North America. Atmos. Environ. 14: 409–417.

    Article  Google Scholar 

  8. STENSLAND, G.J. 1983. Wet deposition network data with applications to selected problems. Chapter 4 in Volume 1, A.P. Altschuller (ed.), Atmospheric sciences (the acidic deposition phenomenon and its effects). EPA-600/8-83-016A.

    Google Scholar 

  9. EVANS, L.S., T.M. CURRY. 1979. Differential responses of plant foliage to simulated acid rain. Am. J. Bot. 66: 953–962.

    Article  Google Scholar 

  10. EVANS, L.S., K.F. LEWIN, C.A. CONWAY, M.J. PATTI.1981. Seed yields (quantity and quality) of field-grown soybeans exposed to simulated acidic rain. New Phytol. 89: 459–509.

    Article  Google Scholar 

  11. EVANS, L.S., K.F. LEWIN, M.J. PATTI, E.A. CUNNINGHAM.1983. Productivity of field-grown soybeans exposed to simulated rain. New Phytol. 93: 377–388.

    Article  Google Scholar 

  12. EVANS, L.S., K.F. LEWIN, M.J. PATTI. 1984. Effects of simulated acidic rain on yields of field-grown soybeans. New Phytol. 96: 207–213.

    Article  Google Scholar 

  13. EVANS, L.S., K.F. LEWIN, K.A. SANTUCCI, M.J. PATTI.1985. Effects of frequency and duration of simulated acidic rainfalls on soybean yields. New Phytol. 100: 199–209.

    Article  Google Scholar 

  14. EVANS, L.S., K.F. LEWIN, E.M. OWEN, K.A. SANTUCCI.1986. Comparison of several cultivars of field-grown soybeans exposed to simulated acidic rainfalls. New Phytol. 102: 409–417.

    Article  Google Scholar 

  15. BANWART, W.L., J.J. HASSETT, B.L. VASALIS. 1984.Acid rain and its effect on corn and soybean yields. Proceedings of the Illinois Fertilizer and Chemical Dealers’ Conference, pp. 19–21.

    Google Scholar 

  16. IRVING, P.M., J.E. MILLER. 1981. Productivity of field-grown soybeans exposed to acid rain and sulfur dioxide alone and in combination. J. Environ. Qual. 10: 473–478.

    Article  Google Scholar 

  17. TROIANO, J., L. COLAVITO, L. HELLER, D.C. McCUNE,J.S. JACOBSON. 1983. Effects of acidity of simulated rain and its joint action with ambient ozone on measures of biomass and yield in soybean. Environ. Exp. Bot. 23: 113–119.

    Article  Google Scholar 

  18. EVANS, L.S., L. DIMITRIADIS, D.A. HINKLEY. 1984.Seed protein quantities of field-grown soybeans exposed to simulated acidic rain. New Phytol. 97: 71–76.

    Article  Google Scholar 

  19. EVANS, L.S., M.J. SARRANTONIO, E.M. OWEN. 1986.Protein contents of seed yields of field-grown soybeans exposed to simulated acidic rain: Assessment of the sensitivities of four cultivars and effects of duration of simulated rainfall. New Phytol. 103: 689–693.

    Article  Google Scholar 

  20. GALLOWAY, J.N., G.E. LIKENS. 1976. Calibration of collection procedures for the determination and precipitation chemistry. Water Air Soil Pollut. 6: 241–258.

    Article  Google Scholar 

  21. LIKENS, G.E., F.H. BORMANN, J.S. EATON, R.S. PIERCE,N.M. JOHNSON. 1976. Hydrogen input to the Hubbard Brook Experiment Forest, New Hampshire, during the last decade. Water Air Soil Pollut. 6: 435–445.

    Article  Google Scholar 

  22. SEMB, A. 1976. Measurement of acid precipitation in Norway. Water Air Soil Pollut. 6: 231–240.

    Article  Google Scholar 

  23. KELLOGG, W.W., R.D. CADLE, E.R. ALLEN, A.L. LAZRUS,E.A. MARTELL. 1972. The sulfur cycle. Science 175: 587–596.

    Article  ADS  Google Scholar 

  24. FRIEND, J.P. 1979. Sulfur compounds and their distributions. Conference on aerosols: Anthropogenic and natural sources and transport. N.Y. Acad. Sci. January 9-12, 1979, New York City.

    Google Scholar 

  25. National Atmospheric Deposition Program. 1978 and 1979. NADP data reports. Vol. II (1-3). (Available from NADP Coordinator’s Office, Natural Resource Ecology Laboratory, CSU, Fort Collins, Colorado.)

    Google Scholar 

  26. PACK, D.H. 1980. Precipitation chemistry patterns:A two-network data set. Science 208: 1143–1145.

    Article  ADS  Google Scholar 

  27. RAYNOR, G.S., J.V. HAYES. 1978. Experimental data from analysis of sequential precipitation samples at Brookhaven National Laboratory. BNL Report No. 50826.

    Google Scholar 

  28. EVANS, L.S., T.M. CURRY, K.F. LEWIN. 1981.Responses of leaves Phaseolus vulgaris to simulated acidic rain. New Phytol. 88: 403–420.

    Article  Google Scholar 

  29. EVANS, L.W., G.S. RAYNOR, D.M.A. JONES. 1984.Frequency distributions for durations and volumes of rainfalls in the eastern United States in relation to acidic precipitation. Water Air Soil Pollut. 23: 187–195.

    Article  Google Scholar 

  30. MARTIN, J.T., B.E. JUNIPER. 1970. The cuticles of plnats. St. Martin’s Press, New York, 347 p.

    Google Scholar 

  31. JUNIPER, B.E. 1960. Studies on structure in relation to phytotoxicity. Ph.D. Dissertation, University of Oxford, Great Britain.

    Google Scholar 

  32. HALL, D.M., A.I. MATUS, J.A. LAMBERTON, H.N. BARBER.1965. Infra-specific variation in wax on leaf surfaces. Aust. J. Biol. Sci. 18: 323–332.

    Google Scholar 

  33. LINSKENS, H.F. 1950. Quantitative Bestimmung der Benetzbarkeit von Blattoberflächen. Planta 38: 591–600.

    Article  Google Scholar 

  34. FOGG, G.E. 1948. Adhesion of water to external surfaces of leaves. Discuss. Faraday Soc. 3: 162–169.

    Article  Google Scholar 

  35. CRAFTS, A.S. 1961. The chemistry and mode of action of herbicides. Interscience Publishers, New York, 269 p.

    Google Scholar 

  36. SCHNEPF, E. 1965. Licht-und elektronenmikroskopische Beobactungen an der Trichom-Hydathoden von Cicer arietinum. Z. Pflanzenphysiol. 53: 245–254.

    Google Scholar 

  37. HABERLANDT. G.F.J. 1914. Physiological plant anatomy. Macmillan, London, 777 p.

    Google Scholar 

  38. KONAR, R.N., H.F. LINSKENS. 1966. The morphology and anatomy of the stigma of Petunia hybrida. Planta 71: 356–371.

    Article  Google Scholar 

  39. ADAM, N.K. 1948. Principles of penetration of liquids into solids. Discuss. Faraday Soc. 3: 5–11.

    Article  Google Scholar 

  40. GUSTAFSON, F.G. 1956. Absorption of Co60 by leaves of young plants and its translocation through the plant. Am. J. Bot. 43: 157–160.

    Article  Google Scholar 

  41. GUSTAFSON, F.G. 1957. Comparative absorption of cobalt-60 by upper and lower epidermis of leaves. Plant Physiol. 32: 141–142.

    Article  Google Scholar 

  42. SARGENT, J.A., G.E. BLACKMAN. 1962. Studies on foliar penetration. 1. Factors controlling the entry of 2,4-dichloroacetic acid. J. Exp. Bot. 13: 348–368.

    Article  Google Scholar 

  43. SCHONHERR, J., M.J. BUKOVAC. 1972. Penetration of stomata by liquids: Dependence on surface tension, wettability, and stomatal morphology. Plant Physiol. 49: 813–819.

    Article  Google Scholar 

  44. NORMAN, A.G., C.E. MINARIK, R.L. WEINTRAUB. 1950.Herbicides. Annu. Rev. Plant Physiol. 1: 141–168.

    Article  Google Scholar 

  45. ROBERTS, E.A., M.D. SOUTHWICK, D.H. PALMITER. 1948.A microchemical examination of Mcintosh apple leaves showing relationship of cell wall constituents to penetration of spray solutions. Plant Physiol. 23: 557–559.

    Article  Google Scholar 

  46. SCHONHERR, J. 1976. Water permeability of isolated cuticular membranes: The effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta 128: 113–126.

    Article  Google Scholar 

  47. SCHONHERR, J., H.W. SCHMIDT. 1979. Water permeability of plant cuticles: Dependence of permeability coefficients of cuticular transpiration on vapor pressure saturation deficit. Planta 144: 391–400.

    Article  Google Scholar 

  48. ORGELL, W.H. 1957. Sorption properties of plant cuticle. Proc. Iowa Acad. Sci. 64: 189–197.

    Google Scholar 

  49. McFARLANE, J.C., W.L. BERRY. 1974. Cation penetration through isolated cuticles. Plant Physiol. 53: 723–727.

    Article  Google Scholar 

  50. PRASAD, R., G.E. BLACKMAN. 1962. Factors affecting the uptake of 2,2-dichloropropionic acid by roots and fronds of Lemna minor. Plant Physiol. 37: xiii (suppl.).

    Google Scholar 

  51. BENNETT, S.H., W.D. THOMAS. 1954. The absorption,translocation and breakdown of schraden applied to leaves, using 32P labeled material. Ann. Appl. Biol. 41: 484–500.

    Article  Google Scholar 

  52. JYUNG, W.H., S.H. WITTWER. 1964. Foliar absorption-An active uptake process. Am. J. Bot. 51: 437–444.

    Article  Google Scholar 

  53. DYBING, C.D., H.B. CURRIER. 1961. Foliar penetration of chemicals. Plant Physiol. 36: 169–174.

    Article  Google Scholar 

  54. LEONARD, O.A. 1958. Studies on the absorption and translocation of 2,4-D in bean plants. Hilgardia 28: 115–160.

    Google Scholar 

  55. EVANS, L.S., N.F. GMUR, J.J. KELSCH. 1977. Perturbations of upper leaf surface structures by simulated acid rain. Environ. Exp. Bot. 17: 145–149.

    Article  Google Scholar 

  56. EVANS, L.S., N.F. GMUR, F. DaCOSTA. 1977. Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain. Am. J. Bot. 64: 903–913.

    Article  Google Scholar 

  57. EVANS, L.S., N.F. GMUR, F. DaCOSTA. 1978. Foliar response fo six clones of hybrid poplar to simulated acid rain. Phytopathology 68: 847–856.

    Article  Google Scholar 

  58. PAPAROZZI, E.T. 1981. The effects of simulated acid precipitation on leaves of Betula alleghaniensis Britt. and Phaseolus vulgaris cv. red kidney. Ph.D. Thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  59. ADAMS, C.M. 1982. The response of Artemisia tilesii to simulated acid precipitation. M.S. Thesis, University of Toronto, Ontario.

    Google Scholar 

  60. SHRINER, D.S. 1974. Effects of simulated rain acidified with sulfuric acid on host-parasite interactions. Ph.D. Thesis, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  61. HOLLOWAY, P.J., E.A. BAKER. 1968. Isolation of plant cuticles with zinc chloride-hydrochloric acid solution. Plant Physiol. 43: 1878–1879.

    Article  Google Scholar 

  62. UPHOF, J.D. Th. 1962. Plant hairs. Gebruder Borntraeger, Berlin-Nokolassee.

    Google Scholar 

  63. EVANS, L.S., K.A. SANTUCCI, M.J. PATTI. 1985.Interactions of simulated rain solutions and leaves of Phaseolus vulgaris L. Environ. Exp. Bot. 25: 31–41.

    Article  Google Scholar 

  64. GALLOWAY, J.N., J.D. THORNTON, S.A. NORTON, H.L.VOLCHOK AND R.A. McLEAN. 1982. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16: 1677–1700.

    Article  Google Scholar 

  65. LINDBERG, S.E. 1982. Factors influencing trace metal sulfate, and hydrogen ion concentrations in rain. Atmos. Environ. 16: 1701–1709.

    Article  Google Scholar 

  66. LINDBERG, S.E., R.R. TURNER, D.S. SHRINER, D.D. HUFF.1981. Atmospheric deposition of heavy metals and their interaction with acid precipitation in a North American deciduous forest. In Third International Conference on Heavy Metals in the Environment. (S.E. Lindberg, R.R. Turner, eds.), Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp. 306–309.

    Google Scholar 

  67. REUTHER, R., R.F. WRIGHT, U. FÖRSTNER. 1981.In S.E. Lindberg, R.R. Turner, eds., ibid. Reference 66., Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp. 318–332.

    Google Scholar 

  68. GARCIA, R.L., J.J. HANWAY. 1976. Foliar fertilization of soybeans during the seed-filling period. Agron. J. 68: 653–657.

    Article  Google Scholar 

  69. NEUMANN, P.M., Y. EHRENREICH, Z. GOLAB. 1981. Foliar fertilizer damage to corn leaves: Relation to cuticular penetration. Agron. J. 73: 979–982.

    Article  Google Scholar 

  70. THOM, W.O., T.C. MILLER, D.H. BORMAN. 1981. Foliar fertilization of rice after midseason. Agron. J. 73: 411–414.

    Article  Google Scholar 

  71. HARDER, H.J., R.E. CARLSON, R.H. SHAW. 1982. Leaf photosynthetic response to foliar fertilizer applied to corn plants during grain fill. Agron. J. 74: 759–761.

    Article  Google Scholar 

  72. EVANS, L.S., D.C. CANADA, K.A. SANTUCCI. 1986.Foliar uptake of 15N from rain. Environ. Exp. Bot. 26: 143–146.

    Article  Google Scholar 

  73. WOOD, J., F.H. BORMANN. 1975. Increase in foliar leaching caused by acidification of an artificial mist. Ambio 4: 169–171.

    Google Scholar 

  74. FAIRFAX, F.A., N.W. LEPP. 1975. Effect of simulated “acid rain” on cation loss from leaves. Nature 225: 324–325.

    Article  ADS  Google Scholar 

  75. HINDAWI, I., J.A. REA, W.L. GRIFFIS. 1979.Response of bush bean exposed to acid mist. 70th Annu. Meeting Joint Air Pollution Control Assoc. Abstract 77, 30.4.

    Google Scholar 

  76. COLE, D.W., D.W. JOHNSON. 1977. Atmospheric sulfate additions and cation leaching in a Douglas-fir ecosystem. Water Resources Res. 13: 313–317.

    Article  ADS  Google Scholar 

  77. van BREEMEN, N., P.A. BURROUGH, E.J. VELHORST, H.F.van DOBBEN, T. de WIT, T.B. RIDDER, H.F. REIJNDERS. 1982. Soil acidification from atmospheric ammonium sulfate in forest canopy throughfall. Nature 299: 548–550.

    Article  ADS  Google Scholar 

  78. HEWITT, E.J., T.A. SMITH, eds. 1974. Plant mineral nutrition. English Universities Press, London, 298 p.

    Google Scholar 

  79. EVANS, L.S. 1986. Proposed mechanisms of initial injury causing apical dieback in red spruce at high elevation in eastern North America. Can. J. For. Res., in press.

    Google Scholar 

  80. SCHERBATSKOY, T., R.M. KLEIN. 1983. Response of spruce and birch foliage to leaching by acidic mists. J. Environ. Qual. 12: 189–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Evans, L.S. (1987). Chemical Interactions of Acidic Precipitation and Terrestrial Vegetation. In: Saunders, J.A., Kosak-Channing, L., Conn, E.E. (eds) Phytochemical Effects of Environmental Compounds. Recent Advances in Phytochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1931-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1931-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9073-5

  • Online ISBN: 978-1-4613-1931-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics