Advertisement

Uptake and Metabolism of Phenolic Compounds by the Water Hyacinth (Eichhorniacrassipes)

  • David H. O’Keeffe
  • Thomas E. Wiese
  • Shauna R. Brummet
  • Todd W. Miller
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 21)

Abstract

The water hyacinth (Eichhornia crassipes) (Fig. 1) is a free-floating, subtropical, freshwater macrophyte. It is considered to be one of the world’s worst aquatic weeds. This is in no small part due to its phenomenal growth rate. It has been estimated that 10 adult plants can multiply to about 650,000 in only eight months.1 Large mats of water hyacinth restrict navigation for transportation and recreation, impede drainage, greatly hasten eutrophication, and increase water loss by evapo-transpiration.

Keywords

Phenolic Compound Aquatic Plant Water Hyacinth Phenol Concentration Nutrient Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PENFOUND, W.T., T.T. EARLE. 1948. The biology of the water hyacinth. Ecol. Monogr. 18: 447–472.CrossRefGoogle Scholar
  2. 2.
    GOSSETT, D.R., W.E. NORRIS, JR. 1972. Relationship between nutrient availability and content of nitrogen and phosphorus in tissues of the aquatic macrophyte Eichhornia crassipes (Mart.) Solms. Hydrobiologia 38: 15–28.CrossRefGoogle Scholar
  3. 3.
    McDONALD, R.C., B.C. WOLVERTON. 1980. Comparative study of wastewater lagoon with and without water hyacinth. Econ. Bot. 34: 101–110.CrossRefGoogle Scholar
  4. 4.
    DeBUSK, T.A., L.D. WILLIAMS, J.H. RYTHER. 1983.Removal of nitrogen and phosphorus from wastewater in a water hyacinth-based treatment system. J. Environ. Qual. 12: 257–262.CrossRefGoogle Scholar
  5. 5.
    BOYD, C.E. 1970. Vascular aquatic plants for mineral nutrient removal from polluted waters. Econ. Bot. 24: 95–103.CrossRefGoogle Scholar
  6. 6.
    SHEFFIELD, C.W. 1967. Water hyacinths for nutrient removal. Hyacinth Control J. 6: 27–30.Google Scholar
  7. 7.
    ROGERS, H.H., D.E. DAVIS. 1972. Nutrient removal by water hyacinth. Weed Sci. 20: 423–428.Google Scholar
  8. 8.
    CORNWALL, D.A., J. ZOLTEK, JR., C.D. PATRINELY, T.deS. FURMAN, J.I. KIM. 1977. Nutrient removal by water hyacinths. J. Water Pollut. Control. Fed. 49: 57–65.Google Scholar
  9. 9.
    WOLVERTON, B.C., R.C. McDONALD. 1979. Upgrading facultative wastewater lagoons with vascular aquatic plants. J. Water Pollut. Control Fed. 51: 305–313.Google Scholar
  10. 10.
    REDDY, K.R., J.C. TUCKER. 1983. Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes. I. Effect of nitrogen source. Econ. Bot. 37: 237–247.CrossRefGoogle Scholar
  11. 11.
    SIMMONDS, M.A. 1979. Tertiary treatment with aquatic macrophytes. Prog. Water Technol. 11: 507–518.Google Scholar
  12. 12.
    TRIDECH, S., A.J. ENGLANDE, JR., M.J. HERBERT, R.F.WILKINSON. 1981. Tertiary wastewater treatment by the application of vascular plants. In Chemistry of Water Reuse. (W.J. Cooper, ed.), Vol. 2, Ann Arbor Science Publishers, pp. 521–539.Google Scholar
  13. 13.
    WOLVERTON, B.C., R.M. BARLOW, R.C. McDONALD. 1976.Application of vascular aquatic plants for pollution removal, energy and food production in a biological system. In Biological Control of Water Pollution. (J. Tourbier, R.W. Pierson, Jr., eds.), University of Pennsylvania Press, pp. 141–149.Google Scholar
  14. 14.
    WOLVERTON, B.C., R.C. McDONALD. 1979. The water hyacinth: from prolific pest to potential provider. Ambio 8: 2–9.Google Scholar
  15. 15.
    CHIGBO, F.E., R.W. SMITH, F.L. SHORE. 1982. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichhornia crassipes. Environ. Pollut. Ser. A 27: 31–36.CrossRefGoogle Scholar
  16. 16.
    COOLEY, T.N., D.F. MARTIN. 1977. Factors affecting the distribution of trace elements in aquatic plants. J. Inorg. Nucl. Chem. 39: 1893–1896.CrossRefGoogle Scholar
  17. 17.
    JANA, S., M.A. CHOUDURI. 1984. Synergistic effects of heavy metal pollutants and senescence in submerged aquatic plants. Water Air Soil Pollut. 21: 351–357.CrossRefGoogle Scholar
  18. 18.
    KAY, S.H., W.T. HALLER, L.A. GARRARD. 1984. Effects of heavy metals on water hyacinths (Eichhornia crassipes (Mart.) Solms). Aquat. Toxicol. (Amsterdam) 5: 117–128.CrossRefGoogle Scholar
  19. 19.
    MURAMOTO, S., Y. OKI. 1983. Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull. Environ. Control Biol. 39: 170–177.CrossRefGoogle Scholar
  20. 20.
    LOW, K.S., C.K. LEE. 1981. Cooper, zinc, nickel and chromium uptake by “kangkong air” (Ipomea aquatica Forsk). Pertanika 4: 16–20.Google Scholar
  21. 21.
    O’KEEFFE, D.H., J.K. HARDY, R.A. RAO. 1984.Cadmium uptake by the water hyacinth: effects of solution factors. Environ. Pollut. Ser. A 34: 133–147.CrossRefGoogle Scholar
  22. 22.
    HARDY, J.K., D.H. O’KEEFFE. 1985. Cadmium uptake by the water hyacinth: effects of root mass, solution volume, complexers and other metal ions. Chemosphere 14: 417–426.CrossRefGoogle Scholar
  23. 23.
    HARDY, J.K., N.B. RABER. 1985. Zinc uptake by the water hyacinth: effects of solution factors. Chemosphere 14: 1155–1166.CrossRefGoogle Scholar
  24. 24.
    HEATON, C., J. FRAME, J.K. HARDY. 1986. Lead uptake ky Eichhornia crassipes. Toxicol. Environ. Chem. 11: 125–136.CrossRefGoogle Scholar
  25. 25.
    BINGHAM, S.W. 1973. Improving water quality by removal of pesticide pollutants with aquatic plants. Office of Water Resources Research (PB219389), 94 p.Google Scholar
  26. 26.
    BINGHAM, S.W., R.L. SHAVER. 1977. Diphenamid removal from water and metabolism by aquatic plants. Pestic. Biochem. Physiol. 7: 8–15.CrossRefGoogle Scholar
  27. 27.
    SMITH, R.W., F.L. SHORE. 1978. Water hyacinths for removal of mirex from water. J. Miss. Acad. Sci. Suppl. 23: 22.Google Scholar
  28. 28.
    SMITH, R.W., W. VAN ZANDT, F.L. SHORE. 1977. Water hyacinths for removal of toxaphene from water. J. Miss. Acad. Sci. Suppl. 22: 20.Google Scholar
  29. 29.
    WOLVERTON, B.C. 1975. Aquatic plants for removal of mevinphos from aquatic environment. NASA Tech. Memo. TM-X-72720.Google Scholar
  30. 30.
    WOLVERTON, B.C., M.M. McKOWN. 1976. Water hyacinths for removal of phenols from polluted waters. Aquat. Bot. 2: 191–201.CrossRefGoogle Scholar
  31. 31.
    VAIDYANATHAN, S., K.M. KAVADIA, M.G. RAO, S. BASU,S.P. MAHAJAN. 1983. Removal of phenol using water hyacinth in a continuous unit. Int. J. Environ. Stud. 21: 183–191.CrossRefGoogle Scholar
  32. 32.
    DeWALLE, F.B., D.A. KALMAN, R. DILLS, D. NORMAN, E.S.K.CHIAN, M. GIABBAI, M. GHOSAL. 1982. Presence of phenolic compounds in sewage, effluent and sludge from municipal sewage treatment plants. Water Sci. Technol. 14: 143–150.Google Scholar
  33. 33.
    BUIKEMA, A.L., JR., M.J. McGINNISS, J. CAIRNS, JR.1979. Phenolics in aquatic ecosystems: a selected review of recent literature. Mar. Environ. Res. 2: 87–181.CrossRefGoogle Scholar
  34. 34.
    MAYER, A.M., E. HAREL. 1979. Polyphenoloxidases in plants. Phytochemistry 18: 193–215.CrossRefGoogle Scholar
  35. 35.
    VAMOS-VIGYAZO, L. 1981. Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit. Rev. Food Sci. Nutr. 15: 49–127.CrossRefGoogle Scholar
  36. 36.
    VEDRALOVA, E., Z. PECHAN, J. DUCHON. 1980. Removing phenol from waste waters by oxidation to melanin with mushroom polyphenoloxidase. Collect. Czech. Chem. Commun. 45: 623–627.Google Scholar
  37. 37.
    SEIDEL, K. 1963. On phenol accumulation and phenol reduction in water plants. Naturwissenschaften 50: 452–453.ADSCrossRefGoogle Scholar
  38. 38.
    SEIDEL, K. 1965. Phenol reduction in water by Scirpus lacustris L. during a 31-month investigation. Naturwissenschaften 52: 398.CrossRefGoogle Scholar
  39. 39.
    SEIDEL, K. 1966. Purification of surface water by higher plants. Naturwissenschaften 53: 289–297.ADSCrossRefGoogle Scholar
  40. 40.
    SEIDEL, K. 1967. Mixotrophy in Scirpus lacustris L.Naturwissenschaften 54: 176–177.ADSCrossRefGoogle Scholar
  41. 41.
    SEIDEL, K. 1976. Macrophytes and water purification.In Biological Control of Water Pollution. (J. Tourbier, R.W. Pierson, Jr., eds.), University of Pennsylvania Press, pp. 141–149.Google Scholar
  42. 42.
    STOM, D.I., R. ROTH. 1981. Some effects of polyphenols on aquatic plants: I. Toxicity of phenols in aquatic plants. Bull. Environ. Contam. Toxicol. 27: 332–337.CrossRefGoogle Scholar
  43. 43.
    STOM, D.J., S.S. TIMOFEEVA, N.F. KASHINA, L.J.BIELYKH, S.N. SOUSLOV, V.V. BOUTOROB, M.S. APARTZIN. 1980. Methods of analyzing quinones in water and their application in studying the effects of hydrophytes on phenols. Part 3: Phenol elimination under the action of aquatic plants. Acta hydrochim. hydrobiol. 8: 223–230.Google Scholar
  44. 44.
    STOM, D.J., S.S. TIMOFEEVA, N.F. KASINA, L.J.BIELYKH, S.N. SOUSLOV, V.V. BOUTOROV, M.S. APARTZIN. 1980. Methods of analyzing quinones in water and their application in studying the effects of hydrophytes on phenols. Part 4:Accumulation of exogenic phenols, localization of endogenic phenols and o-diphenol oxidase in Nitella cells. Acta hydrochim. hydrobiol. 8: 231–240.Google Scholar
  45. 45.
    STOM, D.J., S.S. TIMOFEEVA, N.F. KASHINA, L.J.BIELYKH, S.N. SOUSLOV, V.V. BOUTOROV AND M.S. APARTZIN. 1980. Methods of analyzing quinones in water and their application in studying the effects of hydrophytes on phenols. Part 5: Elimination of carcinogenic amines from solutions under the action of Nitella. Acta hydrochim. hydrobiol. 8: 241–245.Google Scholar
  46. 46.
    STOM, D.J., S.S. TIMOFEEVA, S.N. SOUSLOV. 1981. Some methods of phenol elimination from sewage waters. Part 1: Biodestruction by the vegetable homogenates. Acta hydrochim. hydrobiol. 9: 433–445.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David H. O’Keeffe
    • 1
  • Thomas E. Wiese
    • 1
  • Shauna R. Brummet
    • 2
  • Todd W. Miller
    • 2
  1. 1.Department of ChemistryThe University of Michigan-FlintFlintUSA
  2. 2.Department of ChemistryThe University of AkronAkronUSA

Personalised recommendations