Recovery of Dielectric Strength in Gases

  • R. N. DeWitt
Part of the Advances in Pulsed Power Technology book series (APUT, volume 1)


Normally, when referring to the recovery of a switch, one refers to the recovery of the dielectric strength of the insulating medium; that is, the maximum voltage the medium can hold off without breakdown. After sufficiently long time the medium can return to the predischarge condition and is said to be fully recovered, assuming complete reversibility in the medium and electrode characteristics. While switch media may be gaseous, liquid, solid, or vacuum, only the gaseous case will be considered in this chapter. Predischarge (and thus fully recovered) dielectric strengths have been studied for many years with the aim of establishing criteria that quantify the dielectric strength of these insulating media or the mechanisms and processes leading to the breakdowns of the media. The classical treatments can be found in Ref’s. 1–6, for example, while recent research is found not only in physics and engineering journals but also in edited proceedings, such as Ref’s. 7–10. A collection of important papers with comments can be found in Ref. 11. Predischarge and breakdown studies are most important in problems of insulation and single shot switching. However, it it unclear how much of this information applies to switching at high repetition rates. This chapter will focus on the main issues and indicate the important uncertainties and over-simplifications rather than provide an extensive review of the literature.


Entropy Convection Enthalpy Recombination Helium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J . S. Townsend, The Theory of Ionization of Gases by Collisions, Constabel &Co. Ltd.,London (1910).Google Scholar
  2. 2.
    L.B. Loeb, Basic Processes of Gaseous Electronics, Univ.California Press, Berkeley (1961).Google Scholar
  3. 3.
    H. Raether, Electron Avalances and Breakdown in Gases,Butterworths, USA (1964).Google Scholar
  4. 4.
    F. Llewellyn-Jones, Ionization and Breakdown in Gases,Methuen &Co. Ltd, London (1957); The Glow Discharge.Methuen &Co. Ltd., London (1966).Google Scholar
  5. 5.
    J.M. Meek and J.D. Craggs, ed, Electrical Breakdown of Gases,John Willey &Sons, New York (1978).Google Scholar
  6. 6.
    J.D. Cobine, Gaseous Conductors, Dover, New York (1958).MATHGoogle Scholar
  7. 7.
    L.G. Christophorou, ed, Gaseous Dielectrics, Pergamon Press,New York (IV, 1984, III, 1982, II, 1980).Google Scholar
  8. 8.
    E.E. Kunhardt and L.H. Luessen, ed. Electrical Breakdown andDischarges in Gases, Plenum Press, New York (1983).Google Scholar
  9. 9.
    M. Kristiansen and K. Schoenbach, U.S. Army Workshop on Diffuse Dicharge Opening Switches, (1982) DTIC Report No. AD-A115883;Google Scholar
  10. 11.
    J.A. Rees, Electrical Breakdown in Gases, MacMillan, London (1973).Google Scholar
  11. 12.
    12 M.W. Zemansky, Heat and Thermodynamics, 5th ed., McGraw-Hill, New York (1957).MATHGoogle Scholar
  12. 13.
    B.E. Cherrington, Gaseous Electronics and Gas Lasers, Pergamon, NY (1979).Google Scholar
  13. 14.
    S.B. Tanenbaum, Plasma Physics, McGraw-Hill, New York (1967).Google Scholar
  14. 15.
    A. von Engel, Ionized Gases, Oxford Press, Oxford (1965).Google Scholar
  15. 16.
    D.R. Nicholson, Introduction to Plasma Theory, John Wiley and Sons, New York (1983).Google Scholar
  16. 17.
    M. Cacciatore, M. Capitelli, S. DeBenedictis, M. Dilonardo, and C. Gorse, Section 2.3, and M. Capitelli, C. Gorse and A. Ricard, Chapter 11 in Nonequilibrium Vibrational Kinetics, ed. M. Capitelli, Springer-Verlag, NY (1986).Google Scholar
  17. 18.
    R.N. DeWitt, 4th IEEE Pulsed Power Conf., Albuquerque, NM, p. 223, (1983), IEEE Catalog No. 83CH1908–3.Google Scholar
  18. 19.
    A.V. Rubchinskii, in Investigations into Electrical Discharges in Gases, B.N. Klyarfel’d, ed. Pergamon Press, New York (1964).Google Scholar
  19. 20.
    J.F. Perkins and A.B. Parker, J. Appl. Phys., 41:2895 (1970).CrossRefGoogle Scholar
  20. 21.
    R.J. Churchill, A.B. Parker, and J.D. Craggs, J. Electronics and Control, 11:17 (1961).CrossRefGoogle Scholar
  21. 22.
    D.E. Poole, A.B. Parker, and R.J. Churchill , J. Electronics and Control, 15:131 (1963).CrossRefGoogle Scholar
  22. 23.
    A.B. Parker, D.E. Poole, and J.F. Perkins, Brit. J. Appl. Phys., 16:851 (1965).CrossRefGoogle Scholar
  23. 24.
    S. Moran and S. Hairfield, 5th IEEE Pulsed Power Conf., Alexandria, VA, p. 473 (1985), IEEE Catalog No.85C 2121–2.Google Scholar
  24. 25.
    J.J. Lowke, R.E. Voshall, and H.C. Ludwig, J. Appl Phys.,44:3513 (1973).CrossRefGoogle Scholar
  25. 26.
    W.W. Byszewski, R.B. Piejak, L.C. Pitchford, and J.M. Proud, GTE Laboratories Inc., Rpt. No. N60921–83-C-(F), 1985.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. N. DeWitt
    • 1
  1. 1.Naval Surface Weapons CenterDahlgrenUSA

Personalised recommendations