Advertisement

Relationship of the c-fms Protooncogene Product to the CSF-1 Receptor

  • Charles J. Sherr

Abstract

The genomes of RNA tumor viruses contain viral oncogene sequences derived by recombination from protooncogenes present in all normal cells.(1) As the biochemical functions of protooncogene products are elucidated, we are beginning to formulate a better understanding of the processes that govern cell proliferation and are gaining parallel insights into how aberrant stimuli for growth predispose to malignancy. The products of at least two classes of retroviral oncogenes, including those encoding tyrosine-specific kinases (e.g., v-src, v-abl, v-fes) and guanine nucleotide-binding proteins (the v-ras genes), exert their transforming functions at the plasma membrane. These products are thought to act by emulating the functions of cell surface proteins that transduce extracellular hormonal signals. The fact that two members of the tyrosine kinase gene family (v-erbB and v-fms) encode aberrant forms of cell surface receptors for polypeptide growth factors(2,3) has underscored the possibility that critical alterations in receptor function might directly contribute to neoplasia.

Keywords

Mononuclear Phagocyte Histiocytic Sarcoma Polypeptide Growth Factor Feline Leukemia Virus Human Choriocarcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52:301–354.PubMedCrossRefGoogle Scholar
  2. 2.
    Downward, J., Yarden, Y., Mayes, E., Scrace, G., Totty, N., Stockwell, P., Ullrich, A., Schlessinger, J., and Waterfield, M. D., 1984, Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences, Nature 307:521–527.PubMedCrossRefGoogle Scholar
  3. 3.
    Sherr, C. J., Rettenmier, C. W., Sacca, R., Roussel, M. F., Look, A. T., and Stanley, E. R., 1985, The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell 41:665–676.Google Scholar
  4. 4.
    Frankel, A. E., Gilbert, J. H. Porzig, K.J., Scolnick, E. M., and Aaronson, S. A., 1979, Nature and distribution of feline sarcoma virus nucleotide sequences, J. Virol. 30:821–827.PubMedGoogle Scholar
  5. 5.
    Donner, L., Fedele, L. A., Garon, C. F., Anderson, S., and Sherr, C. J., 1982, McDonough feline sarcoma virus: Characterization of the cloned provirus and its feline oncogene (v-fms), J. Virol. 41:489–500.PubMedGoogle Scholar
  6. 6.
    McDonough, S. K., Larsen, S., Brodey, R. S., Stock, N. D., and Hardy, W. D., Jr., 1971, A transmissible feline fibrosarcoma of viral origin, Cancer Res. 31:953–956.PubMedGoogle Scholar
  7. 7.
    Hardy, W. D., Jr., 1981, The feline sarcoma viruses, J. Am. Hosp. Assoc. 17:981–996.Google Scholar
  8. 8.
    Barbacid, M., Lauver, A. V., and Devare, S. G., 1980, Biochemical and immunological characterization of polyproteins coded for by the McDonough, Gardner-Arnstein, and Snyder-Theilen strains of feline sarcoma virus, J. Virol. 33:196–207.PubMedGoogle Scholar
  9. 9.
    Ruscetti, S. K., Turek, L. P., and Sherr, C. J., 1980, Three independent isolates of feline sarcoma virus code for three distinct gag-X polyproteins, J. Virol. 35:259–264.PubMedGoogle Scholar
  10. 10.
    Van de Ven, W. J. M., Reynolds, F. H., Jr., Nalewaik, R. P., and Stephenson, J. R., 1980, Characterization of a 170,000-dalton polyprotein encoded by the McDonough strain of feline sarcoma virus,J.Virol. 35:165–175.PubMedGoogle Scholar
  11. 11.
    Hampe, A., Gobet, M., Sherr, C. J., and Galibert, F., 1984, The nucleotide sequence of the feline retroviral oncogene v-fins shows unexpected homology with oncogenes encoding tyrosine-specific protein kinases, Proc. Natl. Acad. Sci. USA 81:85–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Rettenmier, C. W., Roussel, M. F., Quinn, C. O., Kitchingman, G. R., Look, A. T., and Sherr, C. J., 1985, Transmembrane orientation of glycoproteins encoded by the v-fms oncogene, Cell 40:971 -981.PubMedCrossRefGoogle Scholar
  13. 13.
    Sherr, C. J., Donner, L., Fedele, L. A., Turek, L. P., Even, J., and Ruscetti, S. K., 1980, Molecular structure and products of feline sarcoma and leukemia viruses; relationship to FOCMA expression, in: Feline Leukemia Viruses (W. D. Hardy, Jr., M. Essex, and A. J. McClelland, eds.), Elsevier/NorthHolland, Amsterdam, pp. 293–307.Google Scholar
  14. 14.
    Anderson, S. J., Furth, M., Wolff, L., Ruscetti, S. K., and Sherr, C. J., 1982, Monoclonal antibodies to the transformation-specific glycoprotein encoded by the feline retroviral oncogene v-fins, J. Virol. 44:696–702.PubMedGoogle Scholar
  15. 15.
    Anderson, S. J., Gonda, M. A., Rettenmier, C. W., and Sherr, C. J., 1984, Subcellular localization of glycoproteins encoded by the viral oncogene v-fms, J. Virol. 51:730–741.PubMedGoogle Scholar
  16. 16.
    Manger, R., Najita, L., Nichols, E. J., Hakomori, S. -I., and Rohrschneider, L., 1984, Cell surface expression of the McDonough strain of feline sarcoma virus fins gene product (gp140fms), Cell 39:327–337.PubMedCrossRefGoogle Scholar
  17. 17.
    Roussel, M. F., Rettenmier, C. W., Look, A. T., and Sherr, C. J., 1984, Cell surface expression of v-/ms-coded glycoproteins is required for transformation, Mol. Cell. Biol. 4:1999–2009.PubMedGoogle Scholar
  18. 18.
    Barbacid, M., and Lauver, A. V., 1981, Gene products of McDonough feline sarcoma virus have an in wïro-associated protein kinase that phosphorylates tyrosine residues: Lack of detection of this enzymatic activity in vivo, J. Virol. 40:812–821.PubMedGoogle Scholar
  19. 19.
    Hunter, T., and Cooper, J. A., 1985, Protein tyrosine kinases, Annu. Rev. Biochem. 54:897–931.PubMedCrossRefGoogle Scholar
  20. 20.
    Nichols, E. J., Manger, R., Hakomori, S., Herscovics, A., and Rohrschneider, R. L., 1985, Transformation by the v-fms oncogene product: Role of glycosylational processes and cell surface expression, Mol. Cell. Biol. 5:3467–3475.PubMedGoogle Scholar
  21. 21.
    Ushiro, H., and Cohen, S., 1980, Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A431 cell membranes, J. Biol. Chem. 255:8363–8365.PubMedGoogle Scholar
  22. 22.
    Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M., and Kahn, C. R., 1982, Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system, Nature 298:667–669.PubMedCrossRefGoogle Scholar
  23. 23.
    Nishimura, J., Huang, J. S., and Deuel, T. F., 1982, Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membrane, Proc. Natl. Acad. Sci. USA 79:4303–4307.PubMedCrossRefGoogle Scholar
  24. 24.
    Ek, B., Westermark, B., Wasteson, A., and Heldin, C. -H., 1982, Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor, Nature 295:419–420.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobs, S., Kull, F. C., Jr., Earp, H. S., Svoboda, M. E., van Wyk, J. J., and Cuatrecasas, P., 1983, Somatomedin C stimulates the phosphorylation of the beta subunit of its own receptor, J. Biol. Chem. 253:9581–9584.Google Scholar
  26. 26.
    Rettenmier, C. W., Chen, J. H., Roussel, M. F., and Sherr, C. J., 1985, The product of the c-fins proto-oncogene: A glycoprotein with associated tyrosine kinase activity, Science 228:320–322.PubMedCrossRefGoogle Scholar
  27. 27.
    Morgan, C. J., and Stanley, E. R., 1984, Chemical crosslinking of the mononuclear phagocyte specific growth factor CSF-1 to its receptor at the cell surface, Biochem. Biophys. Res. Commun. 119:35–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Müller, R., Tremblay, J. M., Adamson, E. D., and Verma, I. M., 1983, Tissue and cell type specific expression of two human c-onc genes, Nature 304:454–456.PubMedCrossRefGoogle Scholar
  29. 29.
    Müller, R., Slamon, D. J., Adamson, E. D., Tremblay, J. M., Muller, D., Cline, M. J., and Verma, I. M., 1983, Transcription of c-onc genes c-raski and c-fms during mouse development, Mol. Cell. Biol 3:1062–1069.PubMedGoogle Scholar
  30. 30.
    Sacca, R., Stanley, E. R., Sherr, C. J., and Rettenmier, C. W., 1986, Specific binding of the mononuclear phagocyte colony stimulating factor, CSF-1, to the product of the v-fms oncogene, Proc. Natl. Acad. Sci. USA 83:3331–3335.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto, T., Nishida, T., Miyajima, N., Kawai, S., Ooi, T., and Toyoshima, K., 1982, The erbB gene of avian erythroblastosis virus is a member of the src gene family, Cell 35:71–78.CrossRefGoogle Scholar
  32. 32.
    Schwartzbaum, S., Halpern, R., and Diamond, B., 1984, The generation of macrophage-like cell lines by transfection with SV40 origin defective DNA, J. Immunol. 132:1158–1162.Google Scholar
  33. 33.
    Stanley, E. R., Guilbert, L. J., Tushinski, R. J., and Bartelmez, S. H., 1984, Growth factors regulating mononuclear phagocyte production, in: Mononuclear Phagocyte Biology (A. Volkman, ed.), Dekker, New York, pp. 373–387.Google Scholar
  34. 34.
    Stanley, E. R., and Heard, P. M., 1977, Factors regulating macrophage production and growth: Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells, J. Biol. Chem. 252:4305–4312.PubMedGoogle Scholar
  35. 35.
    Das, S. K., and Stanley, E. R., 1982, Structure-function studies of a colony stimulating factor (CSF 1), J. Biol. Chem. 257:13679–13684.PubMedGoogle Scholar
  36. 36.
    Kawasaki, E. S., Ladner, M. B., Wang, A. M., Van Arsdell, J., Warren, M. K., Coyne, M. Y., Schweickart, V. L., Lee, M. T., Wilson, K.J., Boosman, A., Stanley, E. R., Ralph, P., and Mark, D. F., 1985, Molecular cloning of a complementary DNA encoding human macrophage-specific colony stimulating factor (CSF-1), Science 230:291–296.PubMedCrossRefGoogle Scholar
  37. 37.
    Roussel, M. F., Sherr, C. J., Barker, P. E., and Ruddle, F. H., 1983, Molecular cloning of the c-fms locus and its assignment to human chromosome 5, J. Virol. 48:770–773.PubMedGoogle Scholar
  38. 38.
    Heisterkamp, N., Groffen, J., and Stephenson, J. R., 1983, Isolation of v-fms and its human cellular homolog, Virology 126:248–258.PubMedCrossRefGoogle Scholar
  39. 39.
    Groffen, J., Heisterkamp, N., Spurr, N., Dana, S., Wasmuth, J. J., and Stephenson, J. R., 1983, Chromosomal localization of the human c-fms oncogene, Nucleic Acids Res. 11:6331–6339.PubMedCrossRefGoogle Scholar
  40. 40.
    LeBeau, M. M., Westbrook, C. A., Diaz, M. O., Larson, R. A., Rowley, J. D., Gasson, J. C., Golde, D. W., and Sherr, C. J., 1986, Evidence for the involvement of GM-CSF and c-fms in the deletion (5q) in myeloid disorders, Science 231:984–987.CrossRefGoogle Scholar
  41. 41.
    Wisniewski, L. P., and Hirschhorn, K., 1983, Acquired partial deletions of the long arm of chromosome 5 in hematologic disorders, Am. J. Hematol. 15:295–310.PubMedCrossRefGoogle Scholar
  42. 42.
    Van den Berghe, H., Vermaelen, K., Mecucci, C., Barbieri, D., and Tricot, G., 1985, The 5q-anomaly, Cancer Genet. Cytogenet. 17:189–255.PubMedCrossRefGoogle Scholar
  43. 43.
    Huebner, K., Isobe, M., Croce, C. M., Golde, D. W., Kaufman, S. E., and Gasson, J. C., 1985, The human gene encoding GM-CSF is at 5q21-q32, the chromosome region deleted in the 5q~ anomaly, Science 230:1282–1285.PubMedCrossRefGoogle Scholar
  44. 44.
    Nienhuis, A. W., Bunn, H. F., Turner, P. H., Gopal, T. V., Nash, W. G., O’Brien, S. J., and Sherr, C. J., 1985, Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q-syndrome, Cell 42:421–428.PubMedCrossRefGoogle Scholar
  45. 45.
    Ellis, R. W., Lowy, D. R., and Scolnick, E. M., 1982, The viral and cellular p21(ras) gene family, in: Advances in Viral Oncology ,Vol. 1 (G. Klein, ed.), Raven Press, New York, pp. 107–126.Google Scholar
  46. 46.
    Lang, R. A., Metcalf, D., Gough, N. M., Dunn, A. R., and Gonda, T. J., 1985, Expression of a hemopoietic growth factor cDNA in a factor-dependent cell line results in autonomous growth and tumorigenicity, Cell 43:531–542.PubMedCrossRefGoogle Scholar
  47. 47.
    Cook, W. D., Metcalf, D., Nicola, N. A., Burgess, A. W., and Walker, F., 1985, Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism, Cell 41:677–683.PubMedCrossRefGoogle Scholar
  48. 48.
    Oliff, A., Agranovsky, O., McKinney, M. D., Murty, V. V. V. S., and Bauchwitz, R., 1985, Friend murine leukemia virus-immortalized myeloid cells are converted into tumorigenic cell lines by Abelson leukemia virus, Proc. Natl. Acad. Sci. USA 82:3306–3310.PubMedCrossRefGoogle Scholar
  49. 49.
    Pierce, J. H., Di Fiore, P. P., Aaronson, S. A., Potter, M., Pumphrey, J., Scott, A., and Ihle, J. N., 1985, Neoplastic transformation of mast cells by Abelson MuLV: Abrogation of IL-3 dependence by a nonautocrine mechanism, Cell 41:685–693.PubMedCrossRefGoogle Scholar
  50. 50.
    Jackowski, S., Rettenmier, C. W., Sherr, C. J., and Rock, C. O., 1986, A guanine nucleotide-dependent phosphatidylinositol-4,5-diphosphate-specific phospholipase C in cells transformed by the v-fms and v-fes oncogenes, J. Biol. Chem. 261:4978–4985.PubMedGoogle Scholar
  51. Wheeler, E. F., Rettenmier, C. W., Look, A. T., and Sherr, C. J., 1986, The v-fms oncogene induces factor independence and tumorigenicity in a CSF-1 dependent macrophage cell line, Nature (Lond.) 324:377–380.CrossRefGoogle Scholar
  52. 51.
    Coussens, L., Van Beveren, C., Smith, D., Chen, E., Mitchell, R. L., Isacke, C., Verma, I. M., and Ullrich, A., 1986, Structural alteration of viral homologue of receptor proto-oncogene fins at car boxyl terminus, Nature (Lond.) 320:277–281.CrossRefGoogle Scholar
  53. 53.
    Roussel, M. F., Dull, T. J., Rettenmier, C. W, Ralph, P., Ullrich, A., and Sherr, C. J., 1987, Transforming potential of the c-fms proto-oncogene (CSF-1 receptor), Nature 325:549–552.PubMedCrossRefGoogle Scholar
  54. 54.
    Wheeler, E. F., Roussel, M. F., Hampe, A., Walker, M. H., Fried, V. A., Look, A. T., Rettenmier,C. W., and Sherr, C. J. ,1986, The aminoterminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences, J. Virol. 59:224–233.PubMedGoogle Scholar
  55. 55.
    Pattenati, M. J., Le Beau, M. M., Lemons, R. S., Shima, E. A., Kawasaki, E. S., Larson, R. A., Sherr, C. J., Diaz, M. O., and Rowley, J. D., 1987, Assignment of CSF-1 to 5q 33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders, Proc. Natl. Acad. Sci USA 84:2970–2974.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Charles J. Sherr
    • 1
  1. 1.Department of Tumor Cell BiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations