Skip to main content

Mechanisms of Cell-to-Cell Communication Not Involving Gap Junctions

  • Chapter
Cell-to-Cell Communication

Abstract

The nervous system is certainly one of the most important systems of cell communication in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerly, J., Blumberg, A., and Peach, M., 1976, Angiotensin interactions with myocardial sympathetic neurons: Enhanced release of dopamine-β-hydroxylase during nerve stimulation, Proc. Soc. Exp. Biol. Med. 151:650–653.

    PubMed  CAS  Google Scholar 

  • Albulquerque, E. X., Warnick, J. E., Tasse, J. R., and Sansone, F. M., 1972, Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscle, Exp. Neurol. 37:607– 634.

    Google Scholar 

  • Aloe, L., and Levi-Montalcini, R., 1979, Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: Effect of antiserum to nerve growth factor, Proc. Natl. Acad. Sci. USA 76:1246–1250.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, R., Livett, B. G., Uttenthal, O. O., Milton, S. H., and Hope, D. B., 1970, Immunohistochemical evidence for the transport of neurophysin in neurosecretory neurons of the dog, Acta Physiol. Scand. 5543–552.

    Google Scholar 

  • Axelsson, J., and Thesleff, S., 1959, A study of supersensitivity in denervated mammalian skeletal muscle, J. Physiol. (London) 147:178–193.

    CAS  Google Scholar 

  • Bennett, M. R., and Pettigrew, A. G., 1976, The formation of neuromuscular synapses, Cold Spring Harbor Symp. Quant. Biol. 40:409–424.

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., 1973, Function of electrotonic junctions in embryonic and adult tissues, Fed. Proc. 32:65–75.

    PubMed  CAS  Google Scholar 

  • Boistel, J., and Fatt, P., 1958, Membrane permeability change during inhibitory transmitter action in crustacean muscle, J. Physiol. (London) 144:176–191.

    CAS  Google Scholar 

  • Bonner, J. T., 1967, The Cellular Slime Moulds ,2nd ed., Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Bonner, J. T., Barkley, D. S., Hall, E. M., Konijn, T. M., Mason, J. W., O’Keefe, G., and Wolfe, P. B., 1969, Acrasin, acrasinase and the sensitivity to acrasin in Dictyostelium discoideum, Dev. Biol. 20:72–87.

    PubMed  CAS  Google Scholar 

  • Bradshaw, R. A., 1978, Nerve growth factor, Annu. Rev. Biochem. 47:191–216.

    PubMed  CAS  Google Scholar 

  • Brookes, J. P., and Hall, Z. W., 1979, Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors, Biochemistry 20:2100–2106.

    Google Scholar 

  • Bueker, E. D., 1948, Implantation of tumors in the hind limb of the embryonic chick and the developmental response of the lumbosacral nervous system, Anat. Rec. 102:369–390.

    PubMed  CAS  Google Scholar 

  • Buller, A. J., Eccles, J. C., and Eccles, R. M., 1960, Interactions between motoneurons and muscles in respect of the characteristic speeds of their responses, J. Physiol. (London) 150:417–439.

    CAS  Google Scholar 

  • Burden, S. J., Sargent, P. B., and McMahan, U. J., 1979, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of nerve, J. Cell Biol. 82:412–425.

    PubMed  CAS  Google Scholar 

  • Burgen, A. S., and Terroux, K. G., 1953, On the negative inotropic effect in the cat’s auricle, J. Physiol. (London) 120:449–463.

    CAS  Google Scholar 

  • Close, R., 1965, Effects of cross-union of motor nerves to fast and slow skeletal muscles, Nature 206:831–832.

    PubMed  CAS  Google Scholar 

  • Close, R., 1972, Dynamic properties of mammalian skeletal muscle, Physiol. Rev. 52:129–197.

    PubMed  CAS  Google Scholar 

  • del Castillo, J., De Mello, W. C., and Morales, T., 1964, Inhibitory action of γ-aminobutyric acid (GABA) on Ascaris muscle, Experientia 20:141–145.

    PubMed  Google Scholar 

  • De Mello, W. C., 1980, Intercellular communication and junctional permeability, in: Membrane Structure and Function ,Vol. 3 (E. E. Bittar, ed.), pp. 128–164, Wiley, New York.

    Google Scholar 

  • De Mello, W. C., 1983, The role of cAMP and Ca on the modulation of junctional conductance: An integrated hypothesis, Cell Biol. Int. Rep. 7:1033–1040.

    PubMed  Google Scholar 

  • De Mello, W. C., and Maldonado, H., 1985, Synaptic inhibition and cell communication: Impairment of cell-to-cell coupling pronounced by γ-aminobutyric acid (GABA) in the synaptic musculature of Ascaris lumbricoides, Cell Biol. Int. Rep. 9:813.

    Google Scholar 

  • De Mello, W. C., Gonzalez Castillo, M., and van Loon, P., 1983, Intercellular diffusion of Lucifer Yellow CH in mammalian cardiac fibers, J. Mol. Cell. Cardiol. 15:637–643.

    PubMed  Google Scholar 

  • Denny-Brown, D. E., 1929, The histological features of stripped muscle in relation to its functional activity, Proc. R. Soc. London Ser. B 104:371–411.

    Google Scholar 

  • Douglas, W. W., and Poisner, A. M., 1964, Calcium movements in the neurohypophysis of the rat and its relation to the release of vasopressin, J. Physiol. (London) 172:19–30.

    CAS  Google Scholar 

  • Du Bois-Reymond, E., 1877, Muskel-und Nervenphysisik, Gesammelte Abhandl. d. Allegem 2:700–785.

    Google Scholar 

  • Dudel, J., and Kuffler, S. W., 1961, Presynaptic inhibition at the crayfish neuromuscular junction, J. Physiol. (London) 155:543–562.

    CAS  Google Scholar 

  • Eccles, J. C., 1964, The Physiology of Synapses ,Springer-Verlag, Berlin.

    Google Scholar 

  • Elliot, T. R., 1904, On the action of adrenalin, J. Physiol. (London) 31:XXP.

    Google Scholar 

  • Emmelin, N., and Malm, L., 1965, Development of supersensitivity as dependent on the length of degenerating nerve fibres, Am J. Exp. Physiol. 50:142–145.

    CAS  Google Scholar 

  • Fambrough, D. M., 1970, Acetylcholine sensitivity of muscle fiber membranes: Mechanism of regulation by motoneurons, Science 168:372–373.

    PubMed  CAS  Google Scholar 

  • Fambrough, D. M., 1981, Denervation: Cholinergic receptors of skeletal muscle, in: Receptors and Recognition Series ,Vol. 13 (R. J. Lefkowitz, ed.), pp. 125–142, Chapman & Hall, London.

    Google Scholar 

  • Fatt, P., and Katz, B., 1950, Membrane potential changes at the motor end-plate, J. Physiol. (London) 111:46–47.

    Google Scholar 

  • Fatt, P., and Katz, B., 1952, Spontaneous subthreshold activity at motor nerve endings, J. Physiol. (London) 117:109–128.

    CAS  Google Scholar 

  • Fatt, P., and Katz, B., 1953, The effect of inhibitory nerve impulses on a crustacean muscle fibre, J. Physiol. (London) 121:374–389.

    CAS  Google Scholar 

  • Forel, A., 1887, Einige hirnanatomische Betrachtungen und Ergebnissae, Arch. Psychiatr. Ner- venheilk. 18:15–38.

    Google Scholar 

  • Foster, G. A., and Schultzberg, M., 1984, Immunohistochemical analysis of the ontogeny of neuropeptide; immunoreactive neurons in foetal rat brain, Int. J. Dev. Neurosci. 2:387–407.

    CAS  Google Scholar 

  • Furshpan, E. J., and Furukawa, T., 1962, Intracellular and extracellular responses of several regions of the Mauthner cell of the goldfish, J. Neurophysiol. 25:732–771.

    PubMed  CAS  Google Scholar 

  • Furshpan, E. J., and Potter, D. D., 1959, Transmission at the giant motor synapses of the crayfish, J. Physiol. (London) 145:289–325.

    CAS  Google Scholar 

  • Furukawa, T., and Furshpan, E. J., 1963, Two inhibitory mechanisms in the Mauthner neurons of goldfish, J. Neurophysiol. 26:140–176.

    PubMed  CAS  Google Scholar 

  • Gerisch, G., 1986, Dictyostelium discoideum: A eukaryotic microorganism that develops by cell aggregation from a unicellular to a multicellular stage, in: Cellular and Molecular Aspects of Developmental Biology (M. Fougereau and R. Stosa, eds.), Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Gerisch, G., and Hess, B., 1974, Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: Their relation to morphogenetic cell interactions, Proc. Natl. Acad. Sci. USA 71:2118– 2122.

    PubMed  CAS  Google Scholar 

  • Gerisch, G., and Wick, U., 1975, Intracellular oscillations and release of cyclic AMP from Dictyostelium cells, Biochem. Biophys. Res. Commun. 65:364–370.

    PubMed  CAS  Google Scholar 

  • Gerisch, G., Fromm, H., Huesgen, A., and Wick, U., 1975a, Control of cell contact sites by cyclic AMP pulses in differentiating Dictyostelium cells, Nature 255:547.

    PubMed  CAS  Google Scholar 

  • Gerisch, G., Hulser, D., Malchow, D., and Wick, U., 1975b, Cell communication by periodic cyclic-AMP pulses, Philos. Trans. R. Soc. London Ser. B 272:181–192.

    CAS  Google Scholar 

  • Gerlach, J., 1871, Von dem Ruckenmarke, in: Handbuch der Lehre von den Geweben ,Vol. 2.

    Google Scholar 

  • Ginetsinskii, A. G., and Shamarina, N. M., 1942, The tonomotor phenomenon in denervated muscle [Department of Scientific and Industrial Research, Translation, RTS 1710], Osp. Sourem. Biol. 15:283–294.

    Google Scholar 

  • Glicksman, M. A., and Sanes, J. R., 1983, Differentiation of motor nerve terminals formed in the absence of muscle fibres, J. Neurophysiol. 12:661–671.

    CAS  Google Scholar 

  • Green, A. A., and Newell, P. C., 1975, Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum, Cell 6:129–136.

    PubMed  CAS  Google Scholar 

  • Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor: Biochemistry, synthesis and mechanism of action, Annu. Rev. Neurosci. 3:353–402.

    PubMed  CAS  Google Scholar 

  • Guth, L., and Watson, P. K., 1967, The influence of innervation on the soluble proteins of slow and fast muscles of the rat, Exp. Neurol. 17:107–117.

    PubMed  CAS  Google Scholar 

  • Gutmann, E., and Young, J. Z., 1944, Reinnervation of muscle after various periods of atrophy, J. Anat. 78:15–43.

    PubMed  CAS  Google Scholar 

  • Hamburger, V., 1981, Historical landmarks in neurogenesis, Trends Neurosci. 4:151–155.

    Google Scholar 

  • Harris, E. J., and Hutter, D. F., 1956, The action of acetylcholine on the movements of potassium ions in the sinus venosus of the heart, J. Physiol. (London) 133:58–59P.

    Google Scholar 

  • Held, H., 1891, Die centralen Bahnen des Nervous acusticus bei der Katze, Arch. Anat. Physiol. 5:270–291.

    Google Scholar 

  • Held, H., 1905, Zur Kenntniss einer neurofibrillaren. Continuitat im Centralnervensystem der Wir- belthiere, Arch. Anat. Physiol. 43:55–78.

    Google Scholar 

  • Henderson, E. J., 1975, The cyclic adenosine 3’-5’-monophosphate receptor of Dictyostelium discoideum Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle, J. Biol. Chem. 250:4730–4736.

    PubMed  CAS  Google Scholar 

  • Hinsey, J. G., 1934, The innervation of skeletal muscle, Physiol. Rev. 24:514–585.

    Google Scholar 

  • His, W., 1886, Zur Geschichte des menslichen Rückenmarks und der Nervenwurzeln, Abh. Saechs. Ges. (Akad.) Wiss. 13:477–513.

    Google Scholar 

  • Hofmann, W. W., and Thesleff, S., 1972, Studies on the trophic influence of nerve on skeletal muscle, Eur. J. Pharmacol. 20:256–260.

    PubMed  CAS  Google Scholar 

  • Jolesz, F., and Sréter, F. A., 1981, Development, innervation and activity-pattern induced changes in skeletal muscle, Annu. Rev. Physiol. 43:531–552.

    PubMed  CAS  Google Scholar 

  • Katz, B., 1966, Nerve, Muscle and Synapse ,McGraw-Hill, New York.

    Google Scholar 

  • Katz, B., 1969, The Release of Neural Transmitter Substances ,Liverpool University Press, Liverpool.

    Google Scholar 

  • Katz, B., and Miledi, R., 1967, The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 189:535–544.

    CAS  Google Scholar 

  • Katz, B., and Schmitt, O. H., 1940, Electrical interaction between two adjacent nerve fibres, J. Physiol. (London) 97:471–488.

    CAS  Google Scholar 

  • Koelliker, A., 1890, Zur feineren Anatomie des centralen Nervensystems. I. Das Kleinhirn, Z. Wiss. Zool. 49:663–689.

    Google Scholar 

  • Konijn, T. M., van de Meene, J. G. S., Bonner, J. T., and Barkley, D. S., 1967, The acrasin activity of adenosine-3’-5’-cyclic phosphate, Proc. Natl. Acad. Sci. USA 58:1152–1154.

    PubMed  CAS  Google Scholar 

  • Kusano, K., and La Vail, M. M., 1971, Impulse conduction in the shrimp modulated giant fiber with special reference to the structure of the functionally excitable areas, J. Comp. Neurol. 142:481– 494.

    PubMed  CAS  Google Scholar 

  • Lamb, A. H., 1976, The projection patterns of the ventral horn to the hind limb during development, Dev. Biol. 54:82–99.

    PubMed  CAS  Google Scholar 

  • Lamb, A. H., 1981, Target dependency of developing motoneurons in Xenopus laevis, J. Comp. Neurol. 203:157–171.

    PubMed  CAS  Google Scholar 

  • Landmesser, L., and Pilar, G., 1974, Synaptic transmission and cell death during normal ganglionic development, J. Physiol. (London) 241:737–749.

    CAS  Google Scholar 

  • Langer, S. Z., 1976, The role of alpha and beta-presynaptic receptors in the regulation of norepinephrine release elicited by nerve stimulation, Clin. Sci. Mol. Med. 51:423–426.

    Google Scholar 

  • Levi-Montalcini, R., and Angeletti, P. U., 1968, Biological aspects of the nerve growth factor, in: Growth of the Nervous System (G. E. W. Wolstenholme and M. O’Conner, eds.), pp. 126–147, Churchill, London.

    Google Scholar 

  • Levi-Montalcini, R., and Cohen, S., 1960, Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals, Ann. N. Y. Acad. Sci. 85:324–341.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., and Hamburger, V., 1951, Selective growth-stimulation effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo, J. Exp. Zool. 116:321–361.

    PubMed  CAS  Google Scholar 

  • Llinas, R., Blinks, J. R., and Nicholson, C., 1972, Calcium transient in presynaptic terminals in squid giant synapse: Detection with aequorin, Science 176:1127–1129.

    PubMed  CAS  Google Scholar 

  • Loewi, O. L., 1933, The Ferner Lecture on problems connected with the principle of humoral transmission of nervous impulse, Proc. Soc. London Ser. B. 118:299–316.

    Google Scholar 

  • Loewi, O. L., 1945, Edward Gamaliel Janeway Lecture: Aspects of transmission of nervous impulse; theoretical and clinical implications, J. Mt. Sinai Hosp. N.Y. 12:851–865.

    Google Scholar 

  • Löffelholz, K., and Muscholl, E., 1970, Inhibition by parasympathetic nerve stimulation of the release of the adrenergic transmitter, Naunyn Schmiedebergs Arch. Pharmacol. 267:181–184.

    PubMed  Google Scholar 

  • Luco, J. V., and Eyzaguirre, C., 1955, Fibrillation and hypersensitivity to ACh in denervated muscles: Effects of length of degenerating nerve fibers, J. Neurophysiol. 18:65–73.

    PubMed  CAS  Google Scholar 

  • Lundberg, J. M., 1981, Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands: Morphological, biochemical and functional studies, Acta Physiol. Scand. 496:1–57.

    CAS  Google Scholar 

  • Lundberg, J. M., Hedlung, B., and Bartfai, T., 1982, Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland, Nature 295:147–149.

    PubMed  CAS  Google Scholar 

  • Malchow, D., and Gerisch, G., 1974, Short-time binding and hydrolysis of cyclic 3’-5’-adenosine monophosphate by aggregating Dictyostelium cells, Proc. Natl. Acad. Sci. USA 71:2423–2427.

    PubMed  CAS  Google Scholar 

  • Mann, J. E., Sperelakis, N., and Ruffner, J. A., 1981, Alteration in sodium channel gate kinetics of the Hodgkin-Huxley equations applied to an electric field model for interaction between excitable cells, IEEE Trans. Biomed. Eng. 28:655–661.

    PubMed  CAS  Google Scholar 

  • Marshall, L. M., Sanes, J. R., and McMahan, U. J., 1977, Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells, Proc. Natl. Acad. Sci. USA 74:3073–3077.

    PubMed  CAS  Google Scholar 

  • Miledi, R., 1960, The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation, J. Physiol. (London) 151:1–23.

    CAS  Google Scholar 

  • Mobley, W. C., Server, A. C., Ishii, D. N., Riopelle, R. J., and Shooter, E. H., 1977, Nerve growth factor (Parts I, II and III), N. Engl. J. Med. 297:1096–1104; 1149-1158; 1211-1218.

    PubMed  CAS  Google Scholar 

  • Narayanan, Y., and Narayanan, C. H., 1981, Ultrastructural and histochemical observations in the developing iris musculature in the chick, J. Embryol. Exp. Morphol. 62:117–127.

    PubMed  CAS  Google Scholar 

  • Nonidez, J. F., 1944, The present status of the neurone theory, Biol. Rev. 19:30–40.

    Google Scholar 

  • Ochi, R., 1969, Ionic mechanism of the inhibitory postsynaptic potential of crayfish giant motor fiber, Pfluegers Arch. 311:131–143.

    CAS  Google Scholar 

  • O’Donohue, T. L., Millington, W., Handelmann, G. E., Contreras, P. C., and Chronwall, B. M., 1985, On the 50th anniversary of Dale’s law: Multiple neurotransmitter neurons, Trends Pharmacol. Sci. 6:305–308.

    Google Scholar 

  • Otsuka, M., 1972, γ-Aminobutyric acid in the nervous system, in: Structure and Function of Nervous Tissue ,Vol. 4 (G. Bourne, ed.), pp. 249–289, Academic Press, New York.

    Google Scholar 

  • Ozawa, S., and Tsuda, K., 1973, Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell, J. Neurophysiol. 36:805–816.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1:1–17.

    PubMed  CAS  Google Scholar 

  • Pittman, R., and Oppenheim, R. W., 1979, Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses, J. Comp. Neurol. 187:425–446.

    PubMed  CAS  Google Scholar 

  • Poisner, A. M., and Trifaro, J. M., 1967, The role of ATP and ATPase in the release of catecholamines from adrenal medulla. I. ATP-evoked release of catecholamines, ATP and protein from isolated chromaffin granules, Mol. Pharmacol. 3:561–571.

    PubMed  CAS  Google Scholar 

  • Potter, L. T., 1970, Synthesis, storage and release of 14C-acetylcholine in isolated rat diaphragm muscles, J. Physiol. (London) 206:145–166.

    CAS  Google Scholar 

  • Ramón y Cajal, S., 1909, Histologie du system nervaivc de l’ homme et des vertebrés ,Vol. 1, Maloine, Paris.

    Google Scholar 

  • Ramón y Cajal, S., 1929, Studies on Vertebrate Neurogenesis (translation of 1909 edition by L. Guth), Thomas, Springfield, Ill.

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Oye, I., Morgan, H. E., and Sutherland, E. W., 1965, The effect of epinephrine on adenosine 3’-5’-phosphate levels in the isolated perfused rat heart, Mol. Pharmacol. 1:168–177.

    PubMed  CAS  Google Scholar 

  • Sakmann, B., 1975, Reappearance of extrajunctional acetylcholine sensitivity in denervated rat muscle after blockade with α-bungarotoxin, Nature 255:415–416.

    PubMed  CAS  Google Scholar 

  • Saito, A., and Zachs, S. I., 1969, Fine structure of neuromuscular junctions after nerve section and implantation of nerve in denervated muscle, Exp. Mol. Pathol. 10:256–273.

    PubMed  CAS  Google Scholar 

  • Sanes, J. R., 1983, Roles of extracellular matrix in neural development, Annu. Rev. Physiol. 45:581–600.

    PubMed  CAS  Google Scholar 

  • Sanes, J. R., and Hall, Z. W., 1979, Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina, J. Cell Biol. 83:357–370.

    PubMed  CAS  Google Scholar 

  • Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1978, Reinnervation of muscle fiber basal lamina after removal of myofibers, J. Cell Biol. 78:176–198.

    PubMed  CAS  Google Scholar 

  • Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1980, Reinnervation of skeletal muscle: Restoration of the normal synaptic pattern, in: Nerve Repair and Regeneration: Its Clinical and Experimental Basis (D. L. Gewett and H. R. McCarroll, eds.), pp. 130–138, Mosby, St. Louis.

    Google Scholar 

  • Server, A. C., and Shooter, E. M., 1977, Nerve growth factor, Adv. Protein Chem. 31:339–409.

    PubMed  CAS  Google Scholar 

  • Sherrington, C. S., 1897, The central nervous system, in: Textbook of Physiology ,(A. Foster, ed.), 7th ed., Macmillan, London.

    Google Scholar 

  • Sherrington, C. S., 1906, The Integrative Action of the Nervous Systems, Yale University Press, New Haven, Conn.

    Google Scholar 

  • Starke, K., 1977, Regulation of nor-epinephrine release by presynaptic receptor systems, Rev. Physiol. Biochem. Pharmacol. 77:1–124.

    PubMed  CAS  Google Scholar 

  • Terzulo, C. A., and Bullock, T. H., 1956, Measurements of imposed voltage gradient adequate to modulate neuronal firing, Proc. Natl. Acad. Sci. USA 42:687–694.

    Google Scholar 

  • Thoenen, H., Otten, U., and Schwab, M., 1979, Orthograde and retrograde signals for the regulation of neuronal gene expression: The peripheral sympathetic nervous system as a model, in: The Neurosciences, 4th Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 911–928, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Trautwein, W., and Dudel, J., 1958, Zum Mechanisms der Membranwirkung des Acetylcholin an der Herzmuskelfaser, Pfluegers Arch. 266:324–334.

    CAS  Google Scholar 

  • van Geruchten, A., 1891, La structure des centres nerveux la moelle epiniére et le cervelet, Cellule 7:79–122.

    Google Scholar 

  • Waldeyer, H. W. G., 1891, Ueber einige neuere Forschungen im Gebiete der Anatomie des Zentralnervensystems, Dtsch. Med. Wochenschr. 17:1213–1218.

    Google Scholar 

  • Wallace, L. J., and Partlow, L. M., 1976, α-Adrenergic regulation of secretion of mouse saline rich in nerve growth factor, Proc. Natl. Acad. Sci. USA 73:4210–4214.

    PubMed  CAS  Google Scholar 

  • Whittaker, V. P., 1965, The application of subcellular fractionation techniques to the study of brain function, Prog. Biophys. 15:39–96.

    CAS  Google Scholar 

  • Yankner, B. A., and Shooter, E. M., 1982, The biology and mechanism of action of nerve growth factor, Annu. Rev. Biochem. 51:845–868.

    PubMed  CAS  Google Scholar 

  • Yellin, H., 1967, Muscle fiber plasticity and the creation of localized motor units, Anat. Rec. 157:345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

De Mello, W.C. (1987). Mechanisms of Cell-to-Cell Communication Not Involving Gap Junctions. In: De Mello, W.C. (eds) Cell-to-Cell Communication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1917-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1917-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9066-7

  • Online ISBN: 978-1-4613-1917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics