Skip to main content

Permeability and Regulation of Gap Junction Channels in Cells and in Artificial Lipid Bilayers

  • Chapter
Book cover Cell-to-Cell Communication

Abstract

Many cell communities, in spite of the apparent structural individuality of their members, behave in some respects like syncytia, due to the existence of well-defined cell-to-cell channels of communication. Cooperative functions such as the synchronous spread of electrical impulse in heart, smooth muscle, and some areas of the nervous system, equilibration of ionic and metabolic pools, and coordinated responses of cell communities to hormonal or transmitter-mediated stimuli are among some of the many functions of direct cell-to-cell communication (cell coupling), a mechanism that enables tissues to respond to external and internal signals as integrated systems. Cell coupling represents the ability of cells to freely exchange with neighboring cells in direct contact with them, ions, metabolites, and messengers, while maintaining their individuality regarding macromolecules; the syncytiumlike feature being restricted to molecules smaller than M r 1000 (M r 2000 in certain invertebrates).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. M., and Bezanilla, F., 1977, Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol. 70:567–590.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., Bezanilla, F., and Rojas, E., 1973, Destruction of sodium conductance activation in squid axons perfused with pronase, J. Gen. Physiol. 62:375–391.

    PubMed  CAS  Google Scholar 

  • Atkinson, M. M., and Sheridan, J. D., 1985, Reduced junctional permeability in cells transformed by different viral oncogenes, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 205–213, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Azarnia, R., Larsen, W., and Loewenstein, W. R., 1974, The membrane junctions in communicating and non-communicating cells, their hybrids and segregants, Proc. Natl. Acad. Sci. USA 71:880–884.

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., 1966, Physiology of electrotonic junctions, Ann. N.Y. Acad. Sci. 137:509–539.

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., Spira, M. E., and Pappas, G. D., 1972, Properties of electrotonic junctions between embryonic cells of Fundulus, Dev. Biol. 29:419–435.

    PubMed  CAS  Google Scholar 

  • Bernardini, G., and Peracchia, C., 1981, Gap junction crystallization in lens fibers after an increase in cell calcium, Invest. Ophthalmol. Vis. Sci. 21:291–299.

    PubMed  CAS  Google Scholar 

  • Bernardini, G., Peracchia, C., and Venosa, R. A., 1981, Healing over in rat crystalline lens, J. Physiol. (London) 320:187–192.

    CAS  Google Scholar 

  • Bernardini, G., Peracchia, C., and Peracchia, L., 1984, Reversible effects of heptanol on gap junction structure and cell-to-cell electrical uncoupling, Eur. J. Cell Biol. 34:307–312.

    PubMed  CAS  Google Scholar 

  • Blumenthal, D. K., and Stull, J. T., 1982, Effects of pH, ionic strength, and temperature on activation by calmodulin and catalytic activity of myosin light chain kinase, Biochemistry 22:2386–2391.

    Google Scholar 

  • Bodmer, R., and Spray, D. C., 1985, Permeability and electrophysiological properties of Aplysia neurons in situ and in culture, Biophys. J. 47:504a.

    Google Scholar 

  • Brink, P. R., Verselis, V., and Barr, L., 1984, Solvent-solute interactions within the nexal membrane, Biophys. J. 45:121–124.

    PubMed  CAS  Google Scholar 

  • Calhoon, R. D., and Gillette, R., 1983, Ca++ activated and pH sensitive cyclic AMP phosphodiesterase in the nervous system of the mollusc pleurobranchaea, Brain Res. 271:371–374.

    PubMed  CAS  Google Scholar 

  • Campos de Carvalho, A. C., Spray, D. C., and Bennett, M. V. L., 1984, pH dependence of transmission of electrotonic synapses of the crayfish septate axon, Brain Res. 321:279–286.

    Google Scholar 

  • Cole, W. C., and Garfield, R. E., 1985, Alterations in coupling in uterine smooth muscle, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 215–230, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.

    PubMed  CAS  Google Scholar 

  • DeHaan, R. L., and Hirakow, R., 1972, Synchronization of pulsation rates in isolated cardiac myocytes, Exp. Cell Res. 70:214–220.

    PubMed  CAS  Google Scholar 

  • Délèze, J., 1964, Calcium ions and the healing-over of heart fibers, in: Electrophysiology of the Heart (B. Taccardi and C. Marchetti, eds.), p. 147, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Délèze, J., and Loewenstein, W. R., 1976, Permeability of a cell junction during intracellular injection of divalent cations, J. Membr. Biol. 28:71–86.

    PubMed  Google Scholar 

  • De Mello, W. C., 1975, Effect of intracellular injection of calcium and strontium on cell communication in heart, J. Physiol. (London) 250:231–245.

    Google Scholar 

  • De Mello, W. C., 1979, Effect of intracellular injection of La3+ and Mn2+ on electrical coupling of heart cells, Cell Biol. Int. Rep. 3:113–119.

    PubMed  Google Scholar 

  • De Mello, W. C., 1983, The influence of pH on the healing-over of mammalian cardiac muscle, J. Physiol. (London) 339:299–307.

    Google Scholar 

  • De Mello, W. C., 1984, Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells, Biochem. Biophys. Res. Commun. 119:1001–1007.

    PubMed  Google Scholar 

  • DeWeer, P., 1978, Intracellular pH transients induced by CO2 on NH3, Respir. Physiol. 33:41–50.

    CAS  Google Scholar 

  • Flagg-Newton, J. L., Dahl, G., and Loewenstein, W. R., 1981, Cell junction and cyclic AMP. 1. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor, J. Membr. Biol. 63:105–121.

    PubMed  CAS  Google Scholar 

  • Furshpan, E. J., and Potter, D. D., 1959, Transmission of the giant synapse of the crayfish, J. Physiol. (London) 145:289–325.

    CAS  Google Scholar 

  • Garland, D., and Russell, P., 1985, Phosphorylation of lens fiber cell membrane proteins, Proc. Natl. Acad. Sci. USA 82:653–657.

    PubMed  CAS  Google Scholar 

  • Giaume, C., and Korn, H., 1985, Junctional voltage-dependence at the crayfish rectifying synapse, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 367–379, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Gilula, N. B., Reeves, O. R., and Steinbach, A., 1972, Metabolic coupling, ionic coupling and cell contacts, Nature 235:262–265.

    PubMed  CAS  Google Scholar 

  • Girsch, S. J., and Peracchia, C., 1983, Lens junction protein (MIP26) self-assembles into liposomes forming large channels regulated by calmodulin (CaM), J. Cell Biol. 97:83a.

    Google Scholar 

  • Girsch, S. J., and Peracchia, C., 1985a, Liposome-incorporated liver gap junction channels are less permeable than lens channels, Biophys. J. 47:507a.

    Google Scholar 

  • Girsch, S. J., and Peracchia, C., 1985b, Lens cell-to-cell channel proteins. I. Self-assembly into liposomes and permeability regulation by calmodulin, J. Membr. Biol. 83:217–225.

    PubMed  CAS  Google Scholar 

  • Girsch, S. J., and Peracchia, C., 1985C., Lens cell-to-cell channel protein. II. Conformational changes in the presence of calmodulin, J. Membr. Biol. 83:227–233.

    PubMed  CAS  Google Scholar 

  • Girsch, S. J., Shrager, P., and Peracchia, C., 1986, Channel formation following incorporation of lens junction protein (MIP26) in lipid bilayers on patch pipettes, Proc. Int. Soc. Eye Res. 4:128.

    Google Scholar 

  • Gooden, M., Rintoul, D., Takehana, M., and Takemoto, L., 1985, Major intrinsic polypeptide (MIP26K) from lens membrane: Reconstitution into vesicles and inhibition of channel-forming activity by peptide antiserum, Biochem. Biophys. Res. Commun. 128:993–999.

    PubMed  CAS  Google Scholar 

  • Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J., 1984, The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based upon cDNA cloning, Cell 39:49–59.

    PubMed  CAS  Google Scholar 

  • Goshima, K., 1969, Synchronized beating of and electrotonic transmission between myocardial cells, mediated by heterotypic strain cells in monolayer culture, Exp. Cell Res. 58:420–426.

    PubMed  CAS  Google Scholar 

  • Goshima, K., 1970, Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture, Exp. Cell Res. 63:124–130.

    PubMed  CAS  Google Scholar 

  • Green, C. R., and Severs, N. J., 1984, Gap junction connexon configuration in rapidly frozen myocardium and isolated intercalated disks, J. Cell Biol. 99:453–463.

    PubMed  CAS  Google Scholar 

  • Hall, J. E., and Zampighi, G. A., 1985, Protein from purified lens junctions induces channels in planar bilayers, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 177–189, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Harris, A. L., Spray, D. C., and Bennett, M. V. L., 1981, Kinetic properties of a voltage-dependent junctional conductance, J. Gen. Physiol. 77:95–117.

    PubMed  CAS  Google Scholar 

  • Hauswirth, O., 1968, Influence of halothane on electrical properties of cardiac Purkinje fibers, J. Physiol. (London) 201:42P–43P.

    Google Scholar 

  • Hertzberg, E. L., 1984, A detergent-independent procedure for the isolation of gap junctions from rat liver, J. Biol Chem. 259:9936–9943.

    PubMed  CAS  Google Scholar 

  • Hertzberg, E. L., and Gilula, N. B., 1981, Liver gap junctions and lens fiber junctions: Comparative analysis and calmodulin interaction, Cold Spring Harbor Symp. Quant. Biol. 46:639–645.

    CAS  Google Scholar 

  • Hertzberg, E. L., and Skibbens, R. V., 1984, A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues, Cell 39:61–69.

    PubMed  CAS  Google Scholar 

  • Hertzberg, E. L., Spray, D. C., and Bennett, M. V. L., 1985, Reduction of gap junction conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide, Proc. Natl. Acad. Sci. USA 82:2412–2416.

    PubMed  CAS  Google Scholar 

  • Hess, P., and Weingart, R., 1980, Intracellular free calcium modified by pH in sheep cardiac Purkinje fibers, J. Physiol. (London) 307:60P–61P.

    Google Scholar 

  • Hidaka, H., Sasaki, Y., Tamaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T., 1981, N-(6- Aminohexyl)-5-chloro-l-naphthalene-sulfonamide, a calmodulin antagonist, inhibits cell proliferation, Proc. Natl. Acad. Sci. USA 78:4354–4357.

    PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes ,Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hyde, A., Blondel, B., Matter, A., Cheneval, J. P., Filloux, B., and Girardier, L., 1969, Homo- and heterocellular junctions in cell cultures: An electrophysiological and morphological study, Prog. Brain Res. 31:283–311.

    PubMed  CAS  Google Scholar 

  • Iwatsuki, N., and Petersen, O. H., 1978, Electrical coupling and uncoupling of exocrine acinar cells, J. Cell Biol. 79:533–545.

    PubMed  CAS  Google Scholar 

  • Iwatsuki, N., and Petersen, O. H., 1979, Pancreatic acinar cells: The effect of carbon dioxide, ammonium chloride and acetylcholine on intercellular communication, J. Physiol. (London) 291:317–326.

    CAS  Google Scholar 

  • Jacob, T. J., 1983, Raised intracellular free calcium within the lens causes opacification and cellular uncoupling in the frog, J. Physiol. (London) 341:595–601.

    CAS  Google Scholar 

  • Jaslove, S. W., and Brink, P. R., 1986, The mechanism of rectification at the electronic motor giant synapse of the crayfish, Nature 323:63–65.

    PubMed  CAS  Google Scholar 

  • Johnson, K. R., Lampe, P. D., Hurk, C., Louis, C. F., and Johnson, R. G., 1986, A lens intercellular junction protein, MP26, is a phosphoprotein, J. Cell Biol. 102:1334–1343.

    PubMed  CAS  Google Scholar 

  • Johnston, M. F., and Ramón, F., 1981, Electrotonic coupling in internally perfused crayfish segmented axons, J. Physiol. (London) 317:509–518.

    CAS  Google Scholar 

  • Johnston, M. F., Simon, S. A., and Ramón, F., 1980, Interaction of anesthetics with electrical synapses, Nature 286:498–500.

    PubMed  CAS  Google Scholar 

  • Keith, C. H., Ratan, R., Maxfield, F. R., Bajer, A., and Shelanski, M. L., 1985, Local cytoplasmic calcium gradients in living mitotic cells, Nature 316:848–850.

    PubMed  CAS  Google Scholar 

  • Knier, J., Verselis, V., Spray, D. C., and Bennett, M. V. L., 1986, Gap junctions in tunicate embryos: pH and voltage gating mechanisms, Biophys. J. 49:203a.

    Google Scholar 

  • Lasater, E. M., and Dowling, J. E., 1985, Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells, Proc. Natl. Acad. Sci. USA 82:3025– 3029.

    PubMed  CAS  Google Scholar 

  • Lawrence, T. S., Beers, W. H., and Gilula, N. B., 1978, Transmissions of the hormonal stimulation by cell-to-cell communication, Nature 272:501–506.

    PubMed  CAS  Google Scholar 

  • Lea, T. J., and Ashley, C. C., 1978, Increase in free Ca+ + in muscle after exposure to CO2, Nature 275:236–238.

    PubMed  CAS  Google Scholar 

  • Lee, W. M., Cran, D. C., and Lane, N. J., 1982, Carbon dioxide induces disassembly of gap junctional plaque, J. Cell Sci. 57:215–228.

    PubMed  CAS  Google Scholar 

  • Lees-Miller, J. P., and Caveney, S., 1982, Drugs that block calmodulin activity inhibit cell-to-cell coupling in the epidermis of Tenebrio molitor, J. Membr. Biol. 69:233–245.

    PubMed  CAS  Google Scholar 

  • Lehrer, S. S., and Leavis, P. C., 1974, Fluorescence and conformational changes caused by proton binding to troponin C., Biochem. Biophys. Res. Commun. 58:159–165.

    PubMed  CAS  Google Scholar 

  • Loewenstein, W. R., Nakas, M., and Socolar, S. J., 1967, Junctional membrane uncoupling: Permeability transformation at a cell membrane junction, J. Gen. Physiol. 50:1865–1891.

    PubMed  CAS  Google Scholar 

  • Louis, C. F., Johnson, R., Johnson, K., and Turnquist, J., 1985a, Characterization of the bovine lens plasma membrane substrates for cAMP-dependent protein kinase, Eur. J. Biochem. 150:279–286.

    PubMed  CAS  Google Scholar 

  • Louis, C. F., Johnson, R., and Turnquist, J., 1985b, Identification of the calmodulin-binding components in bovine lens plasma membranes, Eur. J. Biochem. 150:271–278.

    PubMed  CAS  Google Scholar 

  • Luckey, J., and Nikaido, H., 1980, Specificity of diffusion channels produced by phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. USA 77:167–171.

    PubMed  CAS  Google Scholar 

  • Makowski, L., 1985, Structural domains in gap junctions: Implications for the control of intercellular communication, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 5–12, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Makowski, L., Caspar, D. L. D., Goodenough, D. A., and Phillips, W. C., 1982, Gap junction structures. III. The effects of variations in the isolation procedure, Biophys. J. 37:189–191.

    PubMed  CAS  Google Scholar 

  • Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A., 1984, Gap junction structures. V. Structural chemistry inferred from X-ray diffraction measurements on sucrose accessibility and trypsin susceptibility, J. Mol. Biol. 174:449–481.

    PubMed  CAS  Google Scholar 

  • Mazet, F., Dunia, I., Vassort, G., and Mazet, J. L., 1985, Ultrastructural changes in gap junctions associated with CO2 uncoupling in frog atrial fibers, J. Cell Sci. 74:51–63.

    PubMed  CAS  Google Scholar 

  • Meech, R., and Thomas, R. C., 1977, The effect of calcium injection on the intracellular sodium and pH of snail neurones, J. Physiol. (London) 265:867–879.

    CAS  Google Scholar 

  • Miller, T. M., and Goodenough, D. A., 1985, Gap junction structures after experimental alteration of junctional channel conductance, J. Cell Biol. 101:1741–1748.

    PubMed  CAS  Google Scholar 

  • Mullins, L. J., Tiffert, T., Vassort, G., and Whittenbury, J., 1983, Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons, J. Physiol. (London) 378:295–319.

    Google Scholar 

  • Neyton, J., and Trautmann, A., 1985, Single-channel currents of an intercellular lens junction, Nature 317:331–335.

    PubMed  CAS  Google Scholar 

  • Nicholson, B. J., Hunkapiller, M. W., Grim, L. B., Hood, L. E., and Revel, J.-P., 1981, Rat liver gap junction protein: Properties and partial sequence, Proc. Natl. Acad. Sci. USA 78:7594– 7598.

    PubMed  CAS  Google Scholar 

  • Nicholson, B. J., Takemoto, L. J., Hunkapiller, M. W., Hood, L. E., and Revel, J.-P., 1983, Differences between liver gap junction protein and lens MIP26 from rat: Implications for tissue specificity of gap junctions, Cell 32:967–978.

    PubMed  CAS  Google Scholar 

  • Nicholson, B. J., Gros, D. B., Kent, S. B. H., Hood, L. E., and Revel, J.-P., 1985, The Mr 28,000 gap junction proteins from rat heart and liver are different but related, J. Biol. Chem. 260:6514– 6517.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., and Rosenberg, E. Y., 1985, Functional reconstitution of lens gap junction proteins into proteoliposomes, J. Membr. Biol. 85:87–92.

    PubMed  CAS  Google Scholar 

  • Nishiye, H., 1977, The mechanism of Ca+ + action on the healing-over process in mammalian cardiac muscles: A kinetic analysis, Jpn. J. Physiol. 27:451–466.

    PubMed  CAS  Google Scholar 

  • Noma, A., and Tusboi, N., 1987, Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig, J. Physiol. 382:193–211.

    PubMed  CAS  Google Scholar 

  • Obaid, A. L., Socolar, S. J., and Rose, B., 1983, Cell-to-cell channels with two independently regulated gates in series: Analysis of junctional conductance modulation by membrane potential, calcium and pH, J. Membr. Biol. 73:69–89.

    CAS  Google Scholar 

  • Ochs, D.S., Korenbrot, J. I., and Williams, J. A.,1983, Intracellular free calcium concentrations in isolated pancreatic acini: Effects of secretagogues, Biochem. Biophys. Res. Commun 117:122–128.

    PubMed  CAS  Google Scholar 

  • Oliveira-Castro, G. M., and Barcinski, M. A., 1974, Calcium-induced uncoupling in communicating human lymphocytes, Biochim. Biophys. Acta 352:338–343.

    PubMed  CAS  Google Scholar 

  • Oliveira-Castro, G. M., and Loewenstein, W. R., 1971, Junctional membrane permeability: Effects of divalent cations, J. Membr. Biol. 5:51–77.

    CAS  Google Scholar 

  • Paul, D. L., 1985, Antibody against liver gap junction 27-kD protein is tissue specific and cross-reacts with a 54-kD protein, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 107–122, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Peracchia, C., 1977, Gap junctions-Structural changes after uncoupling procedures J Cell Biol 72:628–641.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., 1980, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66-81–146.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., 1984, Communicating junctions and calmodulin: Inhibition of electrical uncoupling in Xenopus embryo by calmidazolium, J. Membr. Biol. 91:49–58.

    Google Scholar 

  • Peracchia, C., 1985, Cell coupling, in: The Enzymes of Biological Membranes (A. Martonosi, ed.), pp. 81–130, Plenum Press, New York.

    Google Scholar 

  • Peracchia, C., 1986, Effects of a calmodulin inhibitor (W-7) and cyclic nucleotides on electrical uncoupling of crayfish septate axons, Biophys. J. 49:338a.

    Google Scholar 

  • Peracchia, C., 1987, Calmodulin-like proteins and communicating junctions-Electrical uncoupling of crayfish septate axons is inhibited by the calmodulin inhibitor W7 and is not affected by cyclic nucleotides, Pflug. Arch. Eur. J. Physiol. 408:379–385.

    CAS  Google Scholar 

  • Peracchia, C., and Bernardini, G., 1984, Gap junction structure and cell-to-cell coupling regulation: Is there a calmodulin involvement? Fed. Proc. 43:2681–2691.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., and Dulhunty, A. F., 1976, Low resistance junctions in crayfish: Structural changes with functional uncoupling, J. Cell Biol. 70:419–439.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., and Girsch, S. J., 1985a, Functional modulation of cell coupling: Evidence for a calmodulin-driven channel gate, Am. J. Physiol. 248:H765–H782.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., and Girsch, S. J., 1985b, Is the C-terminal arm of lens gap junction channel protein the channel gate? Biochem. Biophys. Res. Commun. 133:688–695.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., and Girsch, S. J., 1985c., An in vitro approach to cell coupling: Permeability and gating of gap junction channels incorporated into liposomes, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 191–203, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Peracchia, C., and Peracchia, L. L., 1980a, Gap junction dynamics: Reversible effects of divalent cations, J. Cell Biol. 87:708–718.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., and Peracchia, L. L., 1980b, Gap junction dynamics: Reversible effects of hydrogen ions, J. Cell Biol. 87:719–727.

    PubMed  CAS  Google Scholar 

  • Peracchia, C., Bernardini, G., and Peracchia, L. L., 1981, A calmodulin inhibitor prevents gap junction crystallization and electrical uncoupling, J. Cell Biol. 91:124a.

    Google Scholar 

  • Peracchia, C., Bernardini, G., and Peracchia, L. L., 1983, Is calmodulin involved in the regulation of gap junction permeability? Pfluegers Arch. 399:152–154.

    CAS  Google Scholar 

  • Piccolino, M., Neyton, J., and Gerschenfeld, H. M., 1984, Decrease of gap junction permeability induced by dopamine and cyclic adenosine monophosphate in horizontal cells of turtle retina, J. Neurosci. 4:2477–2488.

    PubMed  CAS  Google Scholar 

  • Politoff, A., Pappas, G. D., and Bennett, M. V. L., 1974, Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low, Brain Res. 76:343–346.

    PubMed  CAS  Google Scholar 

  • Pundak, S., and Roche, R. S., 1984, Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: Calcium and pH dependence, Biochemistry 23:1549–1555.

    PubMed  CAS  Google Scholar 

  • Rae, J. L., Thompson, R. D., and Eisenberg, R. S., 1982, The effect of 2-4 dinitrophenol on cell-to-cell communication in the frog lens, Exp. Eye Res. 35:598–609.

    Google Scholar 

  • Reber, W. R., and Weingart, R., 1982, Ungulate cardiac Purkinje fibers: The influence of intracellular pH on the electrical cell-to-cell coupling, J. Physiol. (London) 328:87–104.

    CAS  Google Scholar 

  • Requena, J., Whittenbury, J., Tippert, T., Eisner, D. A., and Mullins, L. J., 1985, The influence of chemical agents on the level of ionized [Ca+ +] in squid axon, J. Gen. Physiol. 85:789–804.

    PubMed  CAS  Google Scholar 

  • Requena, J., Mullins, L. J., Whittenbury, J., and Brinley, F. J., Jr., 1986, Dependence on ionized and total Ca in squid axons on Nao-free or high Ko conditions, J. Gen. Physiol. 87:143–159.

    PubMed  CAS  Google Scholar 

  • Rink, T. J., Tsien, R.-Y., Warner, A., 1980, Free calcium in Xenopus embryos measured with ion-selective microelectrodes, Nature 283:658–660.

    PubMed  CAS  Google Scholar 

  • Rojas, E., and Rudy, B., 1976, Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibers from Loligo, J. Physiol. (London) 262:501–531.

    CAS  Google Scholar 

  • Rose, B., and Loewenstein, W. R., 1975a, Permeability of cell junction depends on local cytoplasmic calcium activity, Nature 254:250–252.

    PubMed  CAS  Google Scholar 

  • Rose, B., and Loewenstein, W. R., 1975b, Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in the cytosol is restricted due to energized sequestering, Science 190:1204–1206.

    PubMed  CAS  Google Scholar 

  • Rose, B., and Rick, R., 1978, Intracellular pH, intracellular free Ca, and junctional cell-cell coupling, J. Membr. Biol. 44:377–415.

    PubMed  CAS  Google Scholar 

  • Rose, B., Simpson, I., and Loewenstein, W. R., 1977, Calcium ion produces graded changes in permeability of membrane channels in cell junction, Nature 267:625–627.

    PubMed  CAS  Google Scholar 

  • Russell, P., Robison, G., and Kinoshita, J., 1981, A new method for rapid isolation of the intrinsic membrane proteins of the lens, Exp. Eye Res. 32:511–516.

    PubMed  CAS  Google Scholar 

  • Saez, J. C., Spray, D. C., Nairn, A. C., Hertzberg, E. L., Greengard, P., and Bennett, M. V. L., 1986, cAMP increases junctional conductance and stimulates phosphorylation of the 27 kD principal gap junction polypeptide, Proc. Natl. Acad. Sci. USA 83:2473–2477.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., and Bennett, M. V. L., 1985, Physiology and pharmacology of gap junctions, Annu. Rev. Physiol. 47:281–303.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1979, Voltage dependence of junctional conductance in early amphibian embryos, Science 204:432–434.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH, Science 211:712–715.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., Stern, J. H., Harris, A. L., and Bennett, M. V. L., 1982, Gap junctional conductance: Comparison of sensitivities to H and Ca ions, Proc. Natl. Acad. Sci. USA 79:441–445.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., Ginzberg, R. D., Morales, E. A., Bennett, M. V. L., and Babayatsky, M., 1984a, Physiological and pharmacological properties of gap junctions between dissociated pairs of rat hepatocytes, J. Cell Biol. 99:344a.

    Google Scholar 

  • Spray, D. C., White, R. L., Campos de Carvalho, A., Harris, A. L., and Bennett, M. V. L., 1984b, Gating of gap junction channels, Biophys. J. 45:219–230.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., White, R. L., Verselis, V., and Bennett, M. V. L., 1985, General and comparative physiology of gap junction channels, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 139–153, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Spray, D. C., Saez, J. C., Brosius, D., Bennett, M. V. L., and Hertzberg, E. L., 1986, Isolated liver gap junctions: Gating of transjunctional currents is similar to that in intact pairs of rat hepatocytes, Proc. Natl. Acad. Sci. USA 83:5494–5497.

    PubMed  CAS  Google Scholar 

  • Steiner, R. F., Lamboy, P. K., and Sternberg, H., 1983, The dependence of molecular dynamics of calmodulin upon pH and ionic strength, Arch. Biochem. Biophys. 222:158–169.

    PubMed  CAS  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature 301:243–246.

    PubMed  CAS  Google Scholar 

  • Traub, O., and Willecke, K., 1982, Cross-reaction of antibodies against liver gap junction protein (26 K) with lens fiber junction protein (MIP) suggests structural homology between these tissue specific gene products, Biochem. Biophys. Res. Commun. 109:895–901.

    PubMed  CAS  Google Scholar 

  • Turin, L., and Warner, A. E., 1977, Carbon dioxide reversibility abolishes ionic communication between cells of early amphibian embryo, Nature 270:56–57.

    PubMed  CAS  Google Scholar 

  • Turin, L., and Warner, A. E., 1980, Intracellular pH in early Xenopus embryos: Its effect on current flow between blastomeres, J. Physiol. (London) 300:489–504.

    CAS  Google Scholar 

  • Unwin, P. N. T., and Ennis, P. D., 1983, Calcium-mediated changes in gap junction structure: Evidence from the low angle X-ray patterns, J. Cell Biol. 97:1459–1466.

    PubMed  CAS  Google Scholar 

  • Unwin, P. N. T., and Ennis, P. D., 1984, Two configurations of a channel-forming membrane protein, Nature 307:609–613.

    PubMed  CAS  Google Scholar 

  • van den Eijnden-van Raaij, A. J. M., de Leeuw, A. L. M., and Broekhuise, R. M., 1985, Bovine lens calmodulin-Isolation, partial characterization and calcium-independent binding to lens membrane proteins, Curr. Eye Res. 4:905–912.

    Google Scholar 

  • van Eldik, L. J., Hertzberg, E. L., Berdan, R. C., and Gilula, N. B., 1985, Interaction of calmodulin and other calcium-modulated proteins with mammalian and arthropod junctional membrane proteins, Biochem. Biophys. Res. Commun. 126:825–832.

    PubMed  Google Scholar 

  • Verselis, V., and Brink, P. R., 1984, Voltage clamp of earthworm septum, Biophys. J. 45:147–150.

    PubMed  CAS  Google Scholar 

  • Warner, A. E., Guthrie, S. C., and Gilula, N. B., 1984, Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo, Nature 311:127– 131.

    PubMed  CAS  Google Scholar 

  • Watanabe, A., and Grundfest, H., 1961, Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons, J. Gen. Physiol. 45:267–308.

    PubMed  CAS  Google Scholar 

  • Weidmann, S., 1970, Electrical constants of trabecular muscle from mammalian heart, J. Physiol. (London) 210:1041–1054.

    CAS  Google Scholar 

  • Weingart, R., 1977, Action of ouabain on intercellular coupling and conduction-velocity in mammalian ventricular muscle, J. Physiol. (London) 264:341–365.

    CAS  Google Scholar 

  • Welsh, M. J., Aster, J., Ireland, M., Alcala, J., and Maisel, H., 1981, Calmodulin and gap junctions: Localization of calmodulin and calmodulin binding sites in chick lens cells, J Cell Biol. 91:123a.

    Google Scholar 

  • Welsh, M. J., Aster, J. C., Ireland, M., Alcala, J., and Maisel, H., 1982, Calmodulin binds to chick lens gap junction protein in a calcium-independent manner, Science 216:642–644.

    PubMed  CAS  Google Scholar 

  • White, R. L., Spray, D. C., Carvalho, A. C., Wittenberg, B. A., and Bennett, M. V. L., 1985, Some physiological and pharmacological properties of cardiac myocytes dissociated from adult rat, Am. J. Physiol. 249:C447–C455.

    PubMed  CAS  Google Scholar 

  • Wilson, M. A., and Gillette, R., 1985, pH sensitivity of calmodulin distribution in nervous tissue fractions, Brain Res. 331:190–193.

    PubMed  CAS  Google Scholar 

  • Wojtczak, J., 1982, Influence of cyclic nucleotides on the internal longitudinal resistance and contractures in the normal and hypoxic mammalian cardiac muscle, J. Mol. Cell Cardiol 14:259–265.

    PubMed  CAS  Google Scholar 

  • Wojtczak, J. A., 1985, Electrical uncoupling induced by general anesthetics: A calcium-independent process? in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 167–175, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Wojtczak, J., Girsch, S., Shrager, P., and Peracchia, C., 1987, Large conductivity channels in patch pipette lipid bilayers formed by lens junction protein (MIP26), Biophy. J. 51:141a.

    Google Scholar 

  • Zampighi, G. A., Hall, J. E., and Kreman, M., 1985, Purified lens junctional protein forms channels in planar lipid films, Proc. Natl. Acad. Sci. USA 82:8468–8472.

    PubMed  CAS  Google Scholar 

  • Zervos, A. S., Hope, J., and Evans, H., 1985, Preparation of a gap junction fraction from uterus of pregnant rats: The 28-KD polypeptides of uterus, liver, and heart gap junctions are homologous J. Cell Biol. 101:1363–1370.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Peracchia, C. (1987). Permeability and Regulation of Gap Junction Channels in Cells and in Artificial Lipid Bilayers. In: De Mello, W.C. (eds) Cell-to-Cell Communication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1917-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1917-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9066-7

  • Online ISBN: 978-1-4613-1917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics