Permeability and Regulation of Gap Junction Channels in Cells and in Artificial Lipid Bilayers

  • Camillo Peracchia


Many cell communities, in spite of the apparent structural individuality of their members, behave in some respects like syncytia, due to the existence of well-defined cell-to-cell channels of communication. Cooperative functions such as the synchronous spread of electrical impulse in heart, smooth muscle, and some areas of the nervous system, equilibration of ionic and metabolic pools, and coordinated responses of cell communities to hormonal or transmitter-mediated stimuli are among some of the many functions of direct cell-to-cell communication (cell coupling), a mechanism that enables tissues to respond to external and internal signals as integrated systems. Cell coupling represents the ability of cells to freely exchange with neighboring cells in direct contact with them, ions, metabolites, and messengers, while maintaining their individuality regarding macromolecules; the syncytiumlike feature being restricted to molecules smaller than M r 1000 (M r 2000 in certain invertebrates).


Junctional Protein Cell Coupling Junctional Conductance Squid Axon Intracellular Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, C. M., and Bezanilla, F., 1977, Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol. 70:567–590.PubMedGoogle Scholar
  2. Armstrong, C. M., Bezanilla, F., and Rojas, E., 1973, Destruction of sodium conductance activation in squid axons perfused with pronase, J. Gen. Physiol. 62:375–391.PubMedGoogle Scholar
  3. Atkinson, M. M., and Sheridan, J. D., 1985, Reduced junctional permeability in cells transformed by different viral oncogenes, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 205–213, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  4. Azarnia, R., Larsen, W., and Loewenstein, W. R., 1974, The membrane junctions in communicating and non-communicating cells, their hybrids and segregants, Proc. Natl. Acad. Sci. USA 71:880–884.PubMedGoogle Scholar
  5. Bennett, M. V. L., 1966, Physiology of electrotonic junctions, Ann. N.Y. Acad. Sci. 137:509–539.PubMedGoogle Scholar
  6. Bennett, M. V. L., Spira, M. E., and Pappas, G. D., 1972, Properties of electrotonic junctions between embryonic cells of Fundulus, Dev. Biol. 29:419–435.PubMedGoogle Scholar
  7. Bernardini, G., and Peracchia, C., 1981, Gap junction crystallization in lens fibers after an increase in cell calcium, Invest. Ophthalmol. Vis. Sci. 21:291–299.PubMedGoogle Scholar
  8. Bernardini, G., Peracchia, C., and Venosa, R. A., 1981, Healing over in rat crystalline lens, J. Physiol. (London) 320:187–192.Google Scholar
  9. Bernardini, G., Peracchia, C., and Peracchia, L., 1984, Reversible effects of heptanol on gap junction structure and cell-to-cell electrical uncoupling, Eur. J. Cell Biol. 34:307–312.PubMedGoogle Scholar
  10. Blumenthal, D. K., and Stull, J. T., 1982, Effects of pH, ionic strength, and temperature on activation by calmodulin and catalytic activity of myosin light chain kinase, Biochemistry 22:2386–2391.Google Scholar
  11. Bodmer, R., and Spray, D. C., 1985, Permeability and electrophysiological properties of Aplysia neurons in situ and in culture, Biophys. J. 47:504a.Google Scholar
  12. Brink, P. R., Verselis, V., and Barr, L., 1984, Solvent-solute interactions within the nexal membrane, Biophys. J. 45:121–124.PubMedGoogle Scholar
  13. Calhoon, R. D., and Gillette, R., 1983, Ca++ activated and pH sensitive cyclic AMP phosphodiesterase in the nervous system of the mollusc pleurobranchaea, Brain Res. 271:371–374.PubMedGoogle Scholar
  14. Campos de Carvalho, A. C., Spray, D. C., and Bennett, M. V. L., 1984, pH dependence of transmission of electrotonic synapses of the crayfish septate axon, Brain Res. 321:279–286.Google Scholar
  15. Cole, W. C., and Garfield, R. E., 1985, Alterations in coupling in uterine smooth muscle, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 215–230, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  16. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedGoogle Scholar
  17. DeHaan, R. L., and Hirakow, R., 1972, Synchronization of pulsation rates in isolated cardiac myocytes, Exp. Cell Res. 70:214–220.PubMedGoogle Scholar
  18. Délèze, J., 1964, Calcium ions and the healing-over of heart fibers, in: Electrophysiology of the Heart (B. Taccardi and C. Marchetti, eds.), p. 147, Pergamon Press, Elmsford, N.Y.Google Scholar
  19. Délèze, J., and Loewenstein, W. R., 1976, Permeability of a cell junction during intracellular injection of divalent cations, J. Membr. Biol. 28:71–86.PubMedGoogle Scholar
  20. De Mello, W. C., 1975, Effect of intracellular injection of calcium and strontium on cell communication in heart, J. Physiol. (London) 250:231–245.Google Scholar
  21. De Mello, W. C., 1979, Effect of intracellular injection of La3+ and Mn2+ on electrical coupling of heart cells, Cell Biol. Int. Rep. 3:113–119.PubMedGoogle Scholar
  22. De Mello, W. C., 1983, The influence of pH on the healing-over of mammalian cardiac muscle, J. Physiol. (London) 339:299–307.Google Scholar
  23. De Mello, W. C., 1984, Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells, Biochem. Biophys. Res. Commun. 119:1001–1007.PubMedGoogle Scholar
  24. DeWeer, P., 1978, Intracellular pH transients induced by CO2 on NH3, Respir. Physiol. 33:41–50.Google Scholar
  25. Flagg-Newton, J. L., Dahl, G., and Loewenstein, W. R., 1981, Cell junction and cyclic AMP. 1. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor, J. Membr. Biol. 63:105–121.PubMedGoogle Scholar
  26. Furshpan, E. J., and Potter, D. D., 1959, Transmission of the giant synapse of the crayfish, J. Physiol. (London) 145:289–325.Google Scholar
  27. Garland, D., and Russell, P., 1985, Phosphorylation of lens fiber cell membrane proteins, Proc. Natl. Acad. Sci. USA 82:653–657.PubMedGoogle Scholar
  28. Giaume, C., and Korn, H., 1985, Junctional voltage-dependence at the crayfish rectifying synapse, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 367–379, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  29. Gilula, N. B., Reeves, O. R., and Steinbach, A., 1972, Metabolic coupling, ionic coupling and cell contacts, Nature 235:262–265.PubMedGoogle Scholar
  30. Girsch, S. J., and Peracchia, C., 1983, Lens junction protein (MIP26) self-assembles into liposomes forming large channels regulated by calmodulin (CaM), J. Cell Biol. 97:83a.Google Scholar
  31. Girsch, S. J., and Peracchia, C., 1985a, Liposome-incorporated liver gap junction channels are less permeable than lens channels, Biophys. J. 47:507a.Google Scholar
  32. Girsch, S. J., and Peracchia, C., 1985b, Lens cell-to-cell channel proteins. I. Self-assembly into liposomes and permeability regulation by calmodulin, J. Membr. Biol. 83:217–225.PubMedGoogle Scholar
  33. Girsch, S. J., and Peracchia, C., 1985C., Lens cell-to-cell channel protein. II. Conformational changes in the presence of calmodulin, J. Membr. Biol. 83:227–233.PubMedGoogle Scholar
  34. Girsch, S. J., Shrager, P., and Peracchia, C., 1986, Channel formation following incorporation of lens junction protein (MIP26) in lipid bilayers on patch pipettes, Proc. Int. Soc. Eye Res. 4:128.Google Scholar
  35. Gooden, M., Rintoul, D., Takehana, M., and Takemoto, L., 1985, Major intrinsic polypeptide (MIP26K) from lens membrane: Reconstitution into vesicles and inhibition of channel-forming activity by peptide antiserum, Biochem. Biophys. Res. Commun. 128:993–999.PubMedGoogle Scholar
  36. Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J., 1984, The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based upon cDNA cloning, Cell 39:49–59.PubMedGoogle Scholar
  37. Goshima, K., 1969, Synchronized beating of and electrotonic transmission between myocardial cells, mediated by heterotypic strain cells in monolayer culture, Exp. Cell Res. 58:420–426.PubMedGoogle Scholar
  38. Goshima, K., 1970, Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture, Exp. Cell Res. 63:124–130.PubMedGoogle Scholar
  39. Green, C. R., and Severs, N. J., 1984, Gap junction connexon configuration in rapidly frozen myocardium and isolated intercalated disks, J. Cell Biol. 99:453–463.PubMedGoogle Scholar
  40. Hall, J. E., and Zampighi, G. A., 1985, Protein from purified lens junctions induces channels in planar bilayers, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 177–189, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  41. Harris, A. L., Spray, D. C., and Bennett, M. V. L., 1981, Kinetic properties of a voltage-dependent junctional conductance, J. Gen. Physiol. 77:95–117.PubMedGoogle Scholar
  42. Hauswirth, O., 1968, Influence of halothane on electrical properties of cardiac Purkinje fibers, J. Physiol. (London) 201:42P–43P.Google Scholar
  43. Hertzberg, E. L., 1984, A detergent-independent procedure for the isolation of gap junctions from rat liver, J. Biol Chem. 259:9936–9943.PubMedGoogle Scholar
  44. Hertzberg, E. L., and Gilula, N. B., 1981, Liver gap junctions and lens fiber junctions: Comparative analysis and calmodulin interaction, Cold Spring Harbor Symp. Quant. Biol. 46:639–645.Google Scholar
  45. Hertzberg, E. L., and Skibbens, R. V., 1984, A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues, Cell 39:61–69.PubMedGoogle Scholar
  46. Hertzberg, E. L., Spray, D. C., and Bennett, M. V. L., 1985, Reduction of gap junction conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide, Proc. Natl. Acad. Sci. USA 82:2412–2416.PubMedGoogle Scholar
  47. Hess, P., and Weingart, R., 1980, Intracellular free calcium modified by pH in sheep cardiac Purkinje fibers, J. Physiol. (London) 307:60P–61P.Google Scholar
  48. Hidaka, H., Sasaki, Y., Tamaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T., 1981, N-(6- Aminohexyl)-5-chloro-l-naphthalene-sulfonamide, a calmodulin antagonist, inhibits cell proliferation, Proc. Natl. Acad. Sci. USA 78:4354–4357.PubMedGoogle Scholar
  49. Hille, B., 1984, Ionic Channels of Excitable Membranes ,Sinauer, Sunderland, Mass.Google Scholar
  50. Hyde, A., Blondel, B., Matter, A., Cheneval, J. P., Filloux, B., and Girardier, L., 1969, Homo- and heterocellular junctions in cell cultures: An electrophysiological and morphological study, Prog. Brain Res. 31:283–311.PubMedGoogle Scholar
  51. Iwatsuki, N., and Petersen, O. H., 1978, Electrical coupling and uncoupling of exocrine acinar cells, J. Cell Biol. 79:533–545.PubMedGoogle Scholar
  52. Iwatsuki, N., and Petersen, O. H., 1979, Pancreatic acinar cells: The effect of carbon dioxide, ammonium chloride and acetylcholine on intercellular communication, J. Physiol. (London) 291:317–326.Google Scholar
  53. Jacob, T. J., 1983, Raised intracellular free calcium within the lens causes opacification and cellular uncoupling in the frog, J. Physiol. (London) 341:595–601.Google Scholar
  54. Jaslove, S. W., and Brink, P. R., 1986, The mechanism of rectification at the electronic motor giant synapse of the crayfish, Nature 323:63–65.PubMedGoogle Scholar
  55. Johnson, K. R., Lampe, P. D., Hurk, C., Louis, C. F., and Johnson, R. G., 1986, A lens intercellular junction protein, MP26, is a phosphoprotein, J. Cell Biol. 102:1334–1343.PubMedGoogle Scholar
  56. Johnston, M. F., and Ramón, F., 1981, Electrotonic coupling in internally perfused crayfish segmented axons, J. Physiol. (London) 317:509–518.Google Scholar
  57. Johnston, M. F., Simon, S. A., and Ramón, F., 1980, Interaction of anesthetics with electrical synapses, Nature 286:498–500.PubMedGoogle Scholar
  58. Keith, C. H., Ratan, R., Maxfield, F. R., Bajer, A., and Shelanski, M. L., 1985, Local cytoplasmic calcium gradients in living mitotic cells, Nature 316:848–850.PubMedGoogle Scholar
  59. Knier, J., Verselis, V., Spray, D. C., and Bennett, M. V. L., 1986, Gap junctions in tunicate embryos: pH and voltage gating mechanisms, Biophys. J. 49:203a.Google Scholar
  60. Lasater, E. M., and Dowling, J. E., 1985, Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells, Proc. Natl. Acad. Sci. USA 82:3025– 3029.PubMedGoogle Scholar
  61. Lawrence, T. S., Beers, W. H., and Gilula, N. B., 1978, Transmissions of the hormonal stimulation by cell-to-cell communication, Nature 272:501–506.PubMedGoogle Scholar
  62. Lea, T. J., and Ashley, C. C., 1978, Increase in free Ca+ + in muscle after exposure to CO2, Nature 275:236–238.PubMedGoogle Scholar
  63. Lee, W. M., Cran, D. C., and Lane, N. J., 1982, Carbon dioxide induces disassembly of gap junctional plaque, J. Cell Sci. 57:215–228.PubMedGoogle Scholar
  64. Lees-Miller, J. P., and Caveney, S., 1982, Drugs that block calmodulin activity inhibit cell-to-cell coupling in the epidermis of Tenebrio molitor, J. Membr. Biol. 69:233–245.PubMedGoogle Scholar
  65. Lehrer, S. S., and Leavis, P. C., 1974, Fluorescence and conformational changes caused by proton binding to troponin C., Biochem. Biophys. Res. Commun. 58:159–165.PubMedGoogle Scholar
  66. Loewenstein, W. R., Nakas, M., and Socolar, S. J., 1967, Junctional membrane uncoupling: Permeability transformation at a cell membrane junction, J. Gen. Physiol. 50:1865–1891.PubMedGoogle Scholar
  67. Louis, C. F., Johnson, R., Johnson, K., and Turnquist, J., 1985a, Characterization of the bovine lens plasma membrane substrates for cAMP-dependent protein kinase, Eur. J. Biochem. 150:279–286.PubMedGoogle Scholar
  68. Louis, C. F., Johnson, R., and Turnquist, J., 1985b, Identification of the calmodulin-binding components in bovine lens plasma membranes, Eur. J. Biochem. 150:271–278.PubMedGoogle Scholar
  69. Luckey, J., and Nikaido, H., 1980, Specificity of diffusion channels produced by phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. USA 77:167–171.PubMedGoogle Scholar
  70. Makowski, L., 1985, Structural domains in gap junctions: Implications for the control of intercellular communication, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 5–12, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  71. Makowski, L., Caspar, D. L. D., Goodenough, D. A., and Phillips, W. C., 1982, Gap junction structures. III. The effects of variations in the isolation procedure, Biophys. J. 37:189–191.PubMedGoogle Scholar
  72. Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A., 1984, Gap junction structures. V. Structural chemistry inferred from X-ray diffraction measurements on sucrose accessibility and trypsin susceptibility, J. Mol. Biol. 174:449–481.PubMedGoogle Scholar
  73. Mazet, F., Dunia, I., Vassort, G., and Mazet, J. L., 1985, Ultrastructural changes in gap junctions associated with CO2 uncoupling in frog atrial fibers, J. Cell Sci. 74:51–63.PubMedGoogle Scholar
  74. Meech, R., and Thomas, R. C., 1977, The effect of calcium injection on the intracellular sodium and pH of snail neurones, J. Physiol. (London) 265:867–879.Google Scholar
  75. Miller, T. M., and Goodenough, D. A., 1985, Gap junction structures after experimental alteration of junctional channel conductance, J. Cell Biol. 101:1741–1748.PubMedGoogle Scholar
  76. Mullins, L. J., Tiffert, T., Vassort, G., and Whittenbury, J., 1983, Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons, J. Physiol. (London) 378:295–319.Google Scholar
  77. Neyton, J., and Trautmann, A., 1985, Single-channel currents of an intercellular lens junction, Nature 317:331–335.PubMedGoogle Scholar
  78. Nicholson, B. J., Hunkapiller, M. W., Grim, L. B., Hood, L. E., and Revel, J.-P., 1981, Rat liver gap junction protein: Properties and partial sequence, Proc. Natl. Acad. Sci. USA 78:7594– 7598.PubMedGoogle Scholar
  79. Nicholson, B. J., Takemoto, L. J., Hunkapiller, M. W., Hood, L. E., and Revel, J.-P., 1983, Differences between liver gap junction protein and lens MIP26 from rat: Implications for tissue specificity of gap junctions, Cell 32:967–978.PubMedGoogle Scholar
  80. Nicholson, B. J., Gros, D. B., Kent, S. B. H., Hood, L. E., and Revel, J.-P., 1985, The Mr 28,000 gap junction proteins from rat heart and liver are different but related, J. Biol. Chem. 260:6514– 6517.PubMedGoogle Scholar
  81. Nikaido, H., and Rosenberg, E. Y., 1985, Functional reconstitution of lens gap junction proteins into proteoliposomes, J. Membr. Biol. 85:87–92.PubMedGoogle Scholar
  82. Nishiye, H., 1977, The mechanism of Ca+ + action on the healing-over process in mammalian cardiac muscles: A kinetic analysis, Jpn. J. Physiol. 27:451–466.PubMedGoogle Scholar
  83. Noma, A., and Tusboi, N., 1987, Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig, J. Physiol. 382:193–211.PubMedGoogle Scholar
  84. Obaid, A. L., Socolar, S. J., and Rose, B., 1983, Cell-to-cell channels with two independently regulated gates in series: Analysis of junctional conductance modulation by membrane potential, calcium and pH, J. Membr. Biol. 73:69–89.Google Scholar
  85. Ochs, D.S., Korenbrot, J. I., and Williams, J. A.,1983, Intracellular free calcium concentrations in isolated pancreatic acini: Effects of secretagogues, Biochem. Biophys. Res. Commun 117:122–128.PubMedGoogle Scholar
  86. Oliveira-Castro, G. M., and Barcinski, M. A., 1974, Calcium-induced uncoupling in communicating human lymphocytes, Biochim. Biophys. Acta 352:338–343.PubMedGoogle Scholar
  87. Oliveira-Castro, G. M., and Loewenstein, W. R., 1971, Junctional membrane permeability: Effects of divalent cations, J. Membr. Biol. 5:51–77.Google Scholar
  88. Paul, D. L., 1985, Antibody against liver gap junction 27-kD protein is tissue specific and cross-reacts with a 54-kD protein, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 107–122, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  89. Peracchia, C., 1977, Gap junctions-Structural changes after uncoupling procedures J Cell Biol 72:628–641.PubMedGoogle Scholar
  90. Peracchia, C., 1980, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66-81–146.PubMedGoogle Scholar
  91. Peracchia, C., 1984, Communicating junctions and calmodulin: Inhibition of electrical uncoupling in Xenopus embryo by calmidazolium, J. Membr. Biol. 91:49–58.Google Scholar
  92. Peracchia, C., 1985, Cell coupling, in: The Enzymes of Biological Membranes (A. Martonosi, ed.), pp. 81–130, Plenum Press, New York.Google Scholar
  93. Peracchia, C., 1986, Effects of a calmodulin inhibitor (W-7) and cyclic nucleotides on electrical uncoupling of crayfish septate axons, Biophys. J. 49:338a.Google Scholar
  94. Peracchia, C., 1987, Calmodulin-like proteins and communicating junctions-Electrical uncoupling of crayfish septate axons is inhibited by the calmodulin inhibitor W7 and is not affected by cyclic nucleotides, Pflug. Arch. Eur. J. Physiol. 408:379–385.Google Scholar
  95. Peracchia, C., and Bernardini, G., 1984, Gap junction structure and cell-to-cell coupling regulation: Is there a calmodulin involvement? Fed. Proc. 43:2681–2691.PubMedGoogle Scholar
  96. Peracchia, C., and Dulhunty, A. F., 1976, Low resistance junctions in crayfish: Structural changes with functional uncoupling, J. Cell Biol. 70:419–439.PubMedGoogle Scholar
  97. Peracchia, C., and Girsch, S. J., 1985a, Functional modulation of cell coupling: Evidence for a calmodulin-driven channel gate, Am. J. Physiol. 248:H765–H782.PubMedGoogle Scholar
  98. Peracchia, C., and Girsch, S. J., 1985b, Is the C-terminal arm of lens gap junction channel protein the channel gate? Biochem. Biophys. Res. Commun. 133:688–695.PubMedGoogle Scholar
  99. Peracchia, C., and Girsch, S. J., 1985c., An in vitro approach to cell coupling: Permeability and gating of gap junction channels incorporated into liposomes, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 191–203, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  100. Peracchia, C., and Peracchia, L. L., 1980a, Gap junction dynamics: Reversible effects of divalent cations, J. Cell Biol. 87:708–718.PubMedGoogle Scholar
  101. Peracchia, C., and Peracchia, L. L., 1980b, Gap junction dynamics: Reversible effects of hydrogen ions, J. Cell Biol. 87:719–727.PubMedGoogle Scholar
  102. Peracchia, C., Bernardini, G., and Peracchia, L. L., 1981, A calmodulin inhibitor prevents gap junction crystallization and electrical uncoupling, J. Cell Biol. 91:124a.Google Scholar
  103. Peracchia, C., Bernardini, G., and Peracchia, L. L., 1983, Is calmodulin involved in the regulation of gap junction permeability? Pfluegers Arch. 399:152–154.Google Scholar
  104. Piccolino, M., Neyton, J., and Gerschenfeld, H. M., 1984, Decrease of gap junction permeability induced by dopamine and cyclic adenosine monophosphate in horizontal cells of turtle retina, J. Neurosci. 4:2477–2488.PubMedGoogle Scholar
  105. Politoff, A., Pappas, G. D., and Bennett, M. V. L., 1974, Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low, Brain Res. 76:343–346.PubMedGoogle Scholar
  106. Pundak, S., and Roche, R. S., 1984, Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: Calcium and pH dependence, Biochemistry 23:1549–1555.PubMedGoogle Scholar
  107. Rae, J. L., Thompson, R. D., and Eisenberg, R. S., 1982, The effect of 2-4 dinitrophenol on cell-to-cell communication in the frog lens, Exp. Eye Res. 35:598–609.Google Scholar
  108. Reber, W. R., and Weingart, R., 1982, Ungulate cardiac Purkinje fibers: The influence of intracellular pH on the electrical cell-to-cell coupling, J. Physiol. (London) 328:87–104.Google Scholar
  109. Requena, J., Whittenbury, J., Tippert, T., Eisner, D. A., and Mullins, L. J., 1985, The influence of chemical agents on the level of ionized [Ca+ +] in squid axon, J. Gen. Physiol. 85:789–804.PubMedGoogle Scholar
  110. Requena, J., Mullins, L. J., Whittenbury, J., and Brinley, F. J., Jr., 1986, Dependence on ionized and total Ca in squid axons on Nao-free or high Ko conditions, J. Gen. Physiol. 87:143–159.PubMedGoogle Scholar
  111. Rink, T. J., Tsien, R.-Y., Warner, A., 1980, Free calcium in Xenopus embryos measured with ion-selective microelectrodes, Nature 283:658–660.PubMedGoogle Scholar
  112. Rojas, E., and Rudy, B., 1976, Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibers from Loligo, J. Physiol. (London) 262:501–531.Google Scholar
  113. Rose, B., and Loewenstein, W. R., 1975a, Permeability of cell junction depends on local cytoplasmic calcium activity, Nature 254:250–252.PubMedGoogle Scholar
  114. Rose, B., and Loewenstein, W. R., 1975b, Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in the cytosol is restricted due to energized sequestering, Science 190:1204–1206.PubMedGoogle Scholar
  115. Rose, B., and Rick, R., 1978, Intracellular pH, intracellular free Ca, and junctional cell-cell coupling, J. Membr. Biol. 44:377–415.PubMedGoogle Scholar
  116. Rose, B., Simpson, I., and Loewenstein, W. R., 1977, Calcium ion produces graded changes in permeability of membrane channels in cell junction, Nature 267:625–627.PubMedGoogle Scholar
  117. Russell, P., Robison, G., and Kinoshita, J., 1981, A new method for rapid isolation of the intrinsic membrane proteins of the lens, Exp. Eye Res. 32:511–516.PubMedGoogle Scholar
  118. Saez, J. C., Spray, D. C., Nairn, A. C., Hertzberg, E. L., Greengard, P., and Bennett, M. V. L., 1986, cAMP increases junctional conductance and stimulates phosphorylation of the 27 kD principal gap junction polypeptide, Proc. Natl. Acad. Sci. USA 83:2473–2477.PubMedGoogle Scholar
  119. Spray, D. C., and Bennett, M. V. L., 1985, Physiology and pharmacology of gap junctions, Annu. Rev. Physiol. 47:281–303.PubMedGoogle Scholar
  120. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1979, Voltage dependence of junctional conductance in early amphibian embryos, Science 204:432–434.PubMedGoogle Scholar
  121. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH, Science 211:712–715.PubMedGoogle Scholar
  122. Spray, D. C., Stern, J. H., Harris, A. L., and Bennett, M. V. L., 1982, Gap junctional conductance: Comparison of sensitivities to H and Ca ions, Proc. Natl. Acad. Sci. USA 79:441–445.PubMedGoogle Scholar
  123. Spray, D. C., Ginzberg, R. D., Morales, E. A., Bennett, M. V. L., and Babayatsky, M., 1984a, Physiological and pharmacological properties of gap junctions between dissociated pairs of rat hepatocytes, J. Cell Biol. 99:344a.Google Scholar
  124. Spray, D. C., White, R. L., Campos de Carvalho, A., Harris, A. L., and Bennett, M. V. L., 1984b, Gating of gap junction channels, Biophys. J. 45:219–230.PubMedGoogle Scholar
  125. Spray, D. C., White, R. L., Verselis, V., and Bennett, M. V. L., 1985, General and comparative physiology of gap junction channels, in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 139–153, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  126. Spray, D. C., Saez, J. C., Brosius, D., Bennett, M. V. L., and Hertzberg, E. L., 1986, Isolated liver gap junctions: Gating of transjunctional currents is similar to that in intact pairs of rat hepatocytes, Proc. Natl. Acad. Sci. USA 83:5494–5497.PubMedGoogle Scholar
  127. Steiner, R. F., Lamboy, P. K., and Sternberg, H., 1983, The dependence of molecular dynamics of calmodulin upon pH and ionic strength, Arch. Biochem. Biophys. 222:158–169.PubMedGoogle Scholar
  128. Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature 301:243–246.PubMedGoogle Scholar
  129. Traub, O., and Willecke, K., 1982, Cross-reaction of antibodies against liver gap junction protein (26 K) with lens fiber junction protein (MIP) suggests structural homology between these tissue specific gene products, Biochem. Biophys. Res. Commun. 109:895–901.PubMedGoogle Scholar
  130. Turin, L., and Warner, A. E., 1977, Carbon dioxide reversibility abolishes ionic communication between cells of early amphibian embryo, Nature 270:56–57.PubMedGoogle Scholar
  131. Turin, L., and Warner, A. E., 1980, Intracellular pH in early Xenopus embryos: Its effect on current flow between blastomeres, J. Physiol. (London) 300:489–504.Google Scholar
  132. Unwin, P. N. T., and Ennis, P. D., 1983, Calcium-mediated changes in gap junction structure: Evidence from the low angle X-ray patterns, J. Cell Biol. 97:1459–1466.PubMedGoogle Scholar
  133. Unwin, P. N. T., and Ennis, P. D., 1984, Two configurations of a channel-forming membrane protein, Nature 307:609–613.PubMedGoogle Scholar
  134. van den Eijnden-van Raaij, A. J. M., de Leeuw, A. L. M., and Broekhuise, R. M., 1985, Bovine lens calmodulin-Isolation, partial characterization and calcium-independent binding to lens membrane proteins, Curr. Eye Res. 4:905–912.Google Scholar
  135. van Eldik, L. J., Hertzberg, E. L., Berdan, R. C., and Gilula, N. B., 1985, Interaction of calmodulin and other calcium-modulated proteins with mammalian and arthropod junctional membrane proteins, Biochem. Biophys. Res. Commun. 126:825–832.PubMedGoogle Scholar
  136. Verselis, V., and Brink, P. R., 1984, Voltage clamp of earthworm septum, Biophys. J. 45:147–150.PubMedGoogle Scholar
  137. Warner, A. E., Guthrie, S. C., and Gilula, N. B., 1984, Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo, Nature 311:127– 131.PubMedGoogle Scholar
  138. Watanabe, A., and Grundfest, H., 1961, Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons, J. Gen. Physiol. 45:267–308.PubMedGoogle Scholar
  139. Weidmann, S., 1970, Electrical constants of trabecular muscle from mammalian heart, J. Physiol. (London) 210:1041–1054.Google Scholar
  140. Weingart, R., 1977, Action of ouabain on intercellular coupling and conduction-velocity in mammalian ventricular muscle, J. Physiol. (London) 264:341–365.Google Scholar
  141. Welsh, M. J., Aster, J., Ireland, M., Alcala, J., and Maisel, H., 1981, Calmodulin and gap junctions: Localization of calmodulin and calmodulin binding sites in chick lens cells, J Cell Biol. 91:123a.Google Scholar
  142. Welsh, M. J., Aster, J. C., Ireland, M., Alcala, J., and Maisel, H., 1982, Calmodulin binds to chick lens gap junction protein in a calcium-independent manner, Science 216:642–644.PubMedGoogle Scholar
  143. White, R. L., Spray, D. C., Carvalho, A. C., Wittenberg, B. A., and Bennett, M. V. L., 1985, Some physiological and pharmacological properties of cardiac myocytes dissociated from adult rat, Am. J. Physiol. 249:C447–C455.PubMedGoogle Scholar
  144. Wilson, M. A., and Gillette, R., 1985, pH sensitivity of calmodulin distribution in nervous tissue fractions, Brain Res. 331:190–193.PubMedGoogle Scholar
  145. Wojtczak, J., 1982, Influence of cyclic nucleotides on the internal longitudinal resistance and contractures in the normal and hypoxic mammalian cardiac muscle, J. Mol. Cell Cardiol 14:259–265.PubMedGoogle Scholar
  146. Wojtczak, J. A., 1985, Electrical uncoupling induced by general anesthetics: A calcium-independent process? in: Gap Junctions (M. V. L. Bennett and D. C. Spray, eds.), pp. 167–175, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  147. Wojtczak, J., Girsch, S., Shrager, P., and Peracchia, C., 1987, Large conductivity channels in patch pipette lipid bilayers formed by lens junction protein (MIP26), Biophy. J. 51:141a.Google Scholar
  148. Zampighi, G. A., Hall, J. E., and Kreman, M., 1985, Purified lens junctional protein forms channels in planar lipid films, Proc. Natl. Acad. Sci. USA 82:8468–8472.PubMedGoogle Scholar
  149. Zervos, A. S., Hope, J., and Evans, H., 1985, Preparation of a gap junction fraction from uterus of pregnant rats: The 28-KD polypeptides of uterus, liver, and heart gap junctions are homologous J. Cell Biol. 101:1363–1370.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Camillo Peracchia
    • 1
  1. 1.Department of PhysiologyUniversity of RochesterRochesterUSA

Personalised recommendations