Skip to main content

Early Cytoplasmic Signals and Cytoskeletal Responses Initiated by Growth Factors in Cultured Cells

  • Chapter
Book cover Cell Membranes

Abstract

Growth factors activate quiescent cells in a stimulus-response coupling process that is initiated by binding the growth factor to its receptor on the cell surface (see Carpenter, 1984). The ultimate result of such activation is DNA synthesis and cell division (mitogenesis). However, such activated cells exhibit a host of earlier responses, some of which begin seconds poststimulation. These “early” cellular responses to growth factors include endocytosis, changes in the cytoskeleton, cell motility, phospholipid turnover, Na+/H+ exchanger activation, fluxes of a variety of ions, calcium transients, protein synthesis, changes in cyclic nucleotide levels, phosphorylation of specific proteins, and gene transcription. The connection, if any, of these early cellular responses with the later DNA synthetic response is obscure at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambros, V., Chen, L., and Buchanan, J., 1975, Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 72:144–148.

    Google Scholar 

  • Ash, J., Voyt, P., and Singer, S., 1976, Reversion from transformed to normal pheno-type by inhibition of protein synthesis in rat kidney cells infected with a temperature-sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73:3603–3607.

    PubMed  CAS  Google Scholar 

  • Axelrod, D., Keppel, D., Schlessinger, J., Elson, E., Webb, W., 1976, Mobility measurements by analysis of fluorescence photobleaching recovery kinetics, Biophysics 16:1055–1060.

    CAS  Google Scholar 

  • Balk, S. D., Whitfield, J. F., Youdale, T., and Braun, A. C., 1973, Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts, Proc. Natl. Acad. Sci. USA 70:675–679.

    PubMed  CAS  Google Scholar 

  • Beguinot, L., Hanover, J. A., Ito, S., Richert, N. D., Willingham, M. C., and Paston, I., 1985, Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth factor receptors, Proc. Natl. Acad. Sci. USA 82:2774–2778.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., and Hanley, M. R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587–595.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Heslop, J. P., Irvine, R. F. and Brown, K. D., 1984a, Inositol lipids and cell proliferation, Biochem. Soc. Trans. 13:67–71.

    Google Scholar 

  • Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown, K. D., 1984b, Inositol triphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor, Biochem. J. 222:195–201.

    PubMed  CAS  Google Scholar 

  • Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive Na+/H+ exchange in a human leukemic cell line, J. Cell Biol. 99:340–343.

    PubMed  CAS  Google Scholar 

  • Betsholtz, C., and Westermark, B., 1984, Growth factor-induced proliferation of human fibroblasts in serum-free culture depends on cell density and extracellular calcium concentration, J. Cell Physiol. 118:203–210.

    PubMed  CAS  Google Scholar 

  • Blackshear, P. J., Witters, L. A., Girard, P. R., Kuo, J. F., and Quama, S. N., 1985, Growth factor-stimulated protein phosphorylation in 3T3-L1 cells. Evidence for protein kinase C-dependent and -independent pathways, J. Biol. Chem. 260:13304–13315.

    PubMed  CAS  Google Scholar 

  • Bockus, B., and Stiles, C., 1984, Regulation of cytoskeletal architecture by platelet-derived growth factor, insulin, and epidermal growth factor, Exp. Cell Res. 153:186–197.

    PubMed  CAS  Google Scholar 

  • Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59:607–618.

    Google Scholar 

  • Boreiko, C., Mondal, S., Narajan, K., and Heidelberger, C, 1980, Effect of 12-O-tetradecanoyl-phorbol-13-acetate on the morphology and growth of C3H/10T1/2 mouse embryo cells, Cancer Res. 40:4709–4716.

    PubMed  CAS  Google Scholar 

  • Boron, W. F., 1984, Cell activation: The “basic” connection, Nature 312:312.

    PubMed  CAS  Google Scholar 

  • Bottom, T., 1974, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59:606–718.

    Google Scholar 

  • Bowen-Pope, D. F., and Ross, R., 1982, Platelet-derived growth factor. II. Specific binding to cultured cells, J. Cell Biol. 96:679–683.

    Google Scholar 

  • Bowen-Pope, D. F., and Rubin, H., 1983, Growth stimulatory precipitates of Ca2+ and pyrophosphate, J. Cell. Physiol. 117:51–61.

    PubMed  CAS  Google Scholar 

  • Boynton, A. L., and Whitfield, J. F., 1976, The different actions of normal and supranormal calcium concentrations on the proliferation of Balb/c 3T3 mouse cells, In Vitro 12:479–484.

    PubMed  CAS  Google Scholar 

  • Boynton, A., and Whitfield, J., 1983, The role of cyclic AMP in cell proliferation: A critical assessment of the evidence, Adv. Cyclic Neucleotide Res. 15:193–294.

    CAS  Google Scholar 

  • Boynton, A. L., Whitfield, J. F., Isaacs, R. J., and Morton, H. J., 1974, Control of 3T3 cell proliferation by calcium. In Vitro 10:12–17.

    PubMed  CAS  Google Scholar 

  • Boynton, A. L., Whitfield, J. F., and Isaacs, R. J., 1976, The different roles of serum and calcium in the control of proliferation of Balb/c 3T3 mouse cells, In Vitro 12:120–123.

    PubMed  CAS  Google Scholar 

  • Bretscher, A., and Lynch, W., 1985, Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: A comparison with the distributions of tropomyosin and α-actinin, J. Cell Biol. 100:1656–1663.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., and Rozengurt, E., 1983, Serum, platelet-derived growth factor, vassopressin, and phorbol esters increase intracellular pH in Swiss 3T3 cells, Biochem. Biophys. Res. Commun. 116:931–938.

    PubMed  CAS  Google Scholar 

  • Burridge, K., and Feramisco, J., 1981, Non-muscle α-actinins are calcium sensitive actin-binding proteins, Nature 294:565–567.

    PubMed  CAS  Google Scholar 

  • Burroni, D., and Ceccarini, C., 1984, The effect of alkaline pH on the cell growth of six different mammalian cells in tissue culture, Exp. Cell Res. 150:505–508.

    PubMed  CAS  Google Scholar 

  • Busa, W. B., and Nuccitelli, R., 1984, Metabolic regulation via intracellular pH, Am. J. Physiol. 246:R409–R438.

    PubMed  CAS  Google Scholar 

  • Campbell, A. K., 1983, Intracellular calcium. Its Universal Role as Regulator ,John Wiley and Sons, New York, p. 556.

    Google Scholar 

  • Carney, D. H., Scott, D. L., Gordon, E. A., and LaBelle, E. F., 1985, Phosphoinositides in mitogenesis: Neomysin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation, Cell 42:479–488.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., 1984, Properties of the receptor for epidermal growth factor, Cell 37:357–358.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., and Cohen, S., 1976, 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts, J. Cell Biol. 71:159–171.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., and Cohen, S., 1979, Epidermal growth factor, Annu. Rev. Biochem. 48: 193–216.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., and Cohen, S., 1984, Peptide growth factors, Trends Biochem. Sci. 9:169–171.

    Google Scholar 

  • Cassel, D., Whiteley, B., Zhuang, Y. X., and Glaser, L., 1985, Mitogen-independent activation of Na+/H+ exchange in human epidermoid carcinoma A431 cells: Regulation by medium osmolality, J. Cell Physiol. 122:178–186.

    PubMed  CAS  Google Scholar 

  • Ceccarini, C., and Eagle, H., 1971a, pH as a determinant of cellular growth and contact inhibition, Proc. Natl. Acad. Sci. USA 68:229–233.

    PubMed  CAS  Google Scholar 

  • Ceccarini, C. and Eagle, H., 1971b, Induction and reversal of contact inhibition of growth by pH modification, Nature New Biol. 233:271–273.

    PubMed  CAS  Google Scholar 

  • Chinkers, M., McKenna, J., and Cohen, S., 1979, Rapid induction or morphological changes in human carcinoma cells A-431 by epidermal growth factor, J. Cell Biol. 83:260–265.

    PubMed  CAS  Google Scholar 

  • Chinkers, M., McKenna, J., and Cohen, S., 1981, Rapid rounding of human epidermoid carcinoma cells A-431 induced by epidermal growth factor, J. Cell Biol. 88:422–429.

    PubMed  CAS  Google Scholar 

  • Cochet, C., Gill, G. N., Meisenhelder, J., Cooper, J. A., and Hunter, T., 1984, C-kinase phos-phorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity, J. Biol. Chem. 259:2553–2558.

    PubMed  CAS  Google Scholar 

  • Cohen, P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296:613–620.

    PubMed  CAS  Google Scholar 

  • Cohen, S., Carpenter, G.,and King, L., 1980, Epidermal growth factor-receptor-proteinkinase interactions, J. Biol. Chem. 255:4834_4842.

    PubMed  Google Scholar 

  • Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T., 1982, Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins, Cell 31:263–273.

    PubMed  CAS  Google Scholar 

  • Cooper, J. A., Sefton, B. M., and Hunter, T., 1984, Diverse mitogenic agents induce the phosphorylation of two related 42,000 dalton proteins on tyrosine in quiescent cells, Mol. Cell. Biol. 4:30–37.

    PubMed  CAS  Google Scholar 

  • Croy, R., and Pardee, A. B., 1979, Enhanced synthesis and stabilization of Mr 68,000 protein in transformed Balb/c-3T3 cells: Candidate for restriction point control of cell growth, Proc. Natl. Acad. Sci. USA 80:4699–4703.

    Google Scholar 

  • Dale, M. M., and Penfield, A., 1984, Synergism between phorbol ester and A23187 in superoxide production by neutrophils, Fed. Eur. Biochem. Sci. 175:170–178.

    CAS  Google Scholar 

  • Das, M., and Fox, C. F., 1978, Molecular mechanism of mitogen action: Processing of receptor induced by epidermal growth factor, Proc. Natl. Acad. Sci. USA 75:2644–2648.

    PubMed  CAS  Google Scholar 

  • Dicker, P., and Rozengurt, E., 1980, Phorbol esters and vassopressin stimulate DNA synthesis by a common mechanism, Nature 287:607–612.

    PubMed  CAS  Google Scholar 

  • Diringer, H., and Friis, R. R., 1977, Changes in phosphatidylinositol metabolism correlated to growth state of normal and Rous sarcoma virus-transformed Japanese quail cells, Cancer Res. 37:2978–2984.

    Google Scholar 

  • Downes, C. P., and Michell, R. H., 1981, The polyphosphoinositide phosphodiesterase of erythorocyte membranes, Biochem. J. 198:133–140.

    PubMed  CAS  Google Scholar 

  • Drummond, A. H., 1985, Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells, Nature 315:752–755.

    PubMed  CAS  Google Scholar 

  • Dulbecco, R., Elkington, J., 1975, Induction of growth in resting fibroblastic cell cultures by Ca2+, Proc. Natl. Acad. Sci. USA 72:1584–1588.

    PubMed  CAS  Google Scholar 

  • Edelman, G., 1976, Surface modulation in cell recognition and cell growth, Science 192:218.

    PubMed  CAS  Google Scholar 

  • Edelman, G., and Yahara, I., 1976, Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73:2047–2051.

    PubMed  CAS  Google Scholar 

  • Ek, B., Westermark, B., Wasteson, A., and Heldin, C. H., 1982, Stimulation of tyrosine-specific phosphorylation by platelet derived growth factor, Nature 295:419–420.

    PubMed  CAS  Google Scholar 

  • Engstrom, W., Zetterberg, A., and Auer, G., 1982, Calcium, phosphate, and cell proliferation, in: Ions, Cell Proliferation, and Cancer (A. L. Boynton, W. L. McKeehan, and J. F. Whitfield, eds.), Academic Press, New York, pp. 259–281.

    Google Scholar 

  • Fechheimer, M., Brier, J., Rockwell, M., Luna, E., and Taylor, D., 1982, A calcium and pH regulated actin binding protein from D. discoideum, Cell Motility 2:287–308.

    CAS  Google Scholar 

  • Gail, M., Scher, C., and Boone, C, 1972, Dissociation of cell motility from cell proliferation in BALB/C-3T3 fibroblasts, Exp. Cell Res. 70:439–443.

    PubMed  CAS  Google Scholar 

  • Gey, C, 1955, Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture, Harvey Lect. 50:154–229.

    CAS  Google Scholar 

  • Gillies, R. J., 1981, Intracellular pH and growth control in eukaryotic cells, in: The Transformed Cell (I. Cameron and T. B. Poole, eds.), Academic Press, New York, pp. 347–395.

    Google Scholar 

  • Gilmore, T., and Martin, G. S., 1983, Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine, Nature 294:771–773.

    Google Scholar 

  • Glenney, J., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border protein (TW-260/240) are related molecules containing a common calmodulinbinding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79:4002.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and Moran, J. S., 1976, Growth factors in mammalian cell culture, Annu. Rev. Biochem. 45:531–558.

    PubMed  CAS  Google Scholar 

  • Gottesman, M. M., Singh, T., LeCarn, A., Roth, C, Nicholas, J. C, Cabral, F., and Pastan, I., 1980, Cyclic-AMP-dependent phosphorylation in cultured fibroblasts: A genetic approach, Cold Spring Harbor Conf. Cell Prolif. 8:195–209.

    Google Scholar 

  • Green, H., 1978, Cyclic AMP in relation to proliferation of the epidermal. A new view, Cell 15:801– 811.

    PubMed  CAS  Google Scholar 

  • Grotendorst, G., 1984, Alteration of the chemotactic response of NIH/3T3 cells to PDGF by growth factors, transformation, and tumor promotors, Cell 36:279–285.

    CAS  Google Scholar 

  • Grotendorst, G., Seppä, H., Kleinman, H., and Martin, G., 1981, Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 78:3669–3672.

    PubMed  CAS  Google Scholar 

  • Grotendorst, G., Chang, T., Seppä, H., Kleinman, J., and Martin, G., 1982, Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells, J. Cell Physiol. 113:261–266.

    PubMed  CAS  Google Scholar 

  • Guidotti, A., Hanbauer, I., and Costa, E., 1977, Nuclear translocation of catolytic subunits of cytosol cAMP-dependent protein kinase in the transgraphic induction of medullary tyrosine hydroxylase, Adv. Cyclic Nucleotide Res. 9:185–194.

    Google Scholar 

  • Habenicht, A. J. R., Glomset, J. A., King, W. C., Nist, C., Mitchell, C. D., and Ross, R., 1981, Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor, J. Biol. Chem. 256:12329–12335.

    PubMed  CAS  Google Scholar 

  • Haigler, H. T., McKenna, J. A., and Cohen, S., 1979, Rapid stimulation of pinocytosis inhuman carcinoma cells A-431 by epidermal growth factor, J. Cell Biol. 83:82–90.

    PubMed  CAS  Google Scholar 

  • Hathaway, D. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. USA 76:1653–1657.

    CAS  Google Scholar 

  • Hazelton, B., Mitchell, B., and Tupper, J., 1979, Calcium, magnesium, and growth control in the WI-38 human fibroblast cell, J. Cell Biol. 83:487–498.

    PubMed  CAS  Google Scholar 

  • Heldin, C. H., and Westermark, B., 1984, Growth factors: Mechanism of action and relation to oncogenes, Cell 37:19–20.

    Google Scholar 

  • Heldin, C. H., Westermark, B., and Wasteson, A., 1981, Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia, Proc. Natl. Acad. Sci. USA 78:3664–3668.

    PubMed  CAS  Google Scholar 

  • Heldin, C. H., Westeson, A., and Westermark, B., 1985, Platelet-derived growth factor, Mol. Cell. Endocrinol. 39:169–187.

    PubMed  CAS  Google Scholar 

  • Herman, B., and Pledger, W., 1985, Platelet-derived growth factor-induced alterations in vinculin and actin distribution in BALB/c-33 cells, J. Cell Biol. 100:1031–1040.

    PubMed  CAS  Google Scholar 

  • Herman, B., Harrington, M., Olashaw, N., and Pledger, W., 1986, Identification of the cellular mechanisms responsible for platelet-derived growth factor induced alterations in cytoplasmic vinculin distribution, J. Cell. Physiol. 126:115–125.

    PubMed  CAS  Google Scholar 

  • Herman, I., Crisona, N., and Pollard, T., 1981, Relation between cell activity and distribution of cytoplasmic actin and myosin, J. Cell Biol. 90:84–91.

    PubMed  CAS  Google Scholar 

  • Hesketh, T. R., Smith G. A., and Metcalfe, J. C, 1982, Calcium and lymphocyte activation, in: Ions, Cell Proliferation, and Cancer (A. L. Boynton, W. L. McKeehan and J. F. Whitfield, eds.), Academic press, New York, pp. 397–415.

    Google Scholar 

  • Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C, 1984, Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes, J. Biol. Chem. 258:4876–4882.

    Google Scholar 

  • Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, J. C., 1985, A common sequence of calcium of pH signals in the mitogenic stimulation of eukaryatic cells, Nature 313:481–484.

    PubMed  CAS  Google Scholar 

  • Highfield, D. P., and Dewey, W. C, 1972, Inhibition of DNA synthesis by synchronized Chinese hamster ovary cells treated in Gl or early S phase with cytohexamide or puromycin, Exp. Cell Res. 75:314–320.

    PubMed  CAS  Google Scholar 

  • Hoffman, R., Ristow, H.-J., Packowsky, H., and Frank, W., 1974, Phospholipid metabolism in embryonic rat fibroblasts following stimulation by a combination of the serum proteins SI and S2, Eur. J. Biochem. 49:317–324.

    Google Scholar 

  • Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54:205–235.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., and Cautrecasas, P., 1973, Epidermal growth factor: Receptors in human fibroblasts and modulation of action by cholera toxin, Proc. Natl. Acad. Sci. USA. 70:2964–2968.

    PubMed  CAS  Google Scholar 

  • Hsei, A., and Puck, T., 1971, Morphological transformation of Chinese hamster cells by dibutyryl andenosine cyclic 3‘:5’monophosphate and testosterone, Proc. Natl. Acad. Sci. USA 68:358–361.

    Google Scholar 

  • Huang, J. S., Huang, S. S., Kennedy, B., and Devel, T. F., 1982, Platelet-derived growth factor: Specific binding to target cells, J. Biol. Chem. 257:8130–8136.

    PubMed  CAS  Google Scholar 

  • Hunter, T., 1985, Oncogenes and growth control, Trends Biochem. Sci. 10:275–280.

    CAS  Google Scholar 

  • Hunter, T., and Cooper, J. A., 1981, Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells, Cell 24:741–752.

    PubMed  CAS  Google Scholar 

  • Hunter, T., Ling, N., and Cooper, J. A., 1984, Protein kinase C phosphorylationof the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane, Nature 311:480–483.

    PubMed  CAS  Google Scholar 

  • Iwashita, S., Fox, C. F., 1984, Epidermal growth factor and potent phorbol tumor promoters induce epidermal growth factor receptor phosphorylation in a similar but distinctly different manner in human epidermoid carcinoma A431 cells, J. Biol. Chem. 259:2559–2567.

    PubMed  CAS  Google Scholar 

  • Jackson, P., and Bellet, A., 1985, Reduced microfilament organization in adenovirus type 5-infected rat embryo cells; A function of early region la, J, Virol, 55:644-650. Jacobsen, K., Elson, E., Koppel, D., Webb, W., 1983, International workshop on the application of fluorescence photobleaching techniques to problems in cell biology, Fed. Proc. 42: 72–79.

    CAS  Google Scholar 

  • Jacobsen, K., Elson, E., Koppel, D., Webb, W., 1983, International workshop on the application of fluorescence photobleaching techniques to problems in cell biology, Fed. Proc. 42: 72–79.

    Google Scholar 

  • Janmey, P., Chaponnier, C., Lind, S., Zaner, K., Stossel, T., and Yin, H., 1985, Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking, Biochemistry 24:3714–3723.

    CAS  Google Scholar 

  • Johnson, P. C, Ware, J. A., Clivedon, P. B., Smith, M., Dvorak, A. M., and Salzman, E. W., 1985, Measurement of ionized calcium in blood platelets with the photoprotein aequorin, J. Biol. Chem. 260:2069–2076.

    PubMed  CAS  Google Scholar 

  • Kaever, V., and Resch, K., 1985, Are cyclic nucleotides involved in the initiation of mitogenic activation of human lymphocytes?, Biochem. Biophys. Acta 846:216–225.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1981, Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase, J. Biol. Chem. 256:7146–7149.

    PubMed  CAS  Google Scholar 

  • Kakiuchi, R., Inui, M., Morimoto, K., Kanda, K., Sobue, K., and Kakiuchi, S., 1983, Caldesmon, a calmodulin-binding, F-actin-interacting protein, is present in aorta, uterus, and platelets, FEBSLett. 154:351–356.

    CAS  Google Scholar 

  • Kamine, J., and Rubin, H., 1976 , Magnesium required for serum stimulation of growth in cultures of chick embryo fibroblasts, Nature 263:143–145.

    PubMed  CAS  Google Scholar 

  • Keith, C., DiPaola, M., Maxfield, F., and Shelanski, M., 1983, Microinjection of Ca2+-calmodulin causes a localized depolymerization of microtubules, J. Cell Biol. 97:1918–1924.

    PubMed  CAS  Google Scholar 

  • Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the cmyc gene by lymphocyte mitogens and platelet-derived growth factor, Cell 35:603–610.

    PubMed  CAS  Google Scholar 

  • Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 258:11442–11445.

    PubMed  CAS  Google Scholar 

  • Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidy- linositol turnover, J. Biol. Chem. 255:2273–2276.

    CAS  Google Scholar 

  • Krupp, M. N., Connolly, D. T., and Lane, M. D., 1982, Synthesis, turnover, and down regulation of epidermal growth factor receptors in human A431 epidermoid carcinoma cells and skin fibroblasts, J. Biol. Chem. 257:11489–11496.

    PubMed  CAS  Google Scholar 

  • L’Allemain, G., Franchi, A., Cragoe, E. J., Jr., and Pouyssegur, J., 1984a, Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series, J. Biol. Chem. 259:4313–4319.

    PubMed  Google Scholar 

  • L’Allemain, G., Paris, S., Pouyssegur, J., 1984b, Growth factor action and intracellular pH regulation in fibroblasts, J. Biol. Chem. 259:5809–5815.

    PubMed  Google Scholar 

  • L’Allemain, G., Paris, S., and Pouyssegur, J., 1985, Role of a Na-dependent Cl-/HCO3 e-change in regulation of intracellular pH in fibroblasts, J. Cell Biol. 260:4877–4883.

    Google Scholar 

  • Lang, V., Pryhitka, C., and Buckley, J. T., 1977, Effect on neomycin and ionophore A23187 and ATP levels and turnover of polyphosphoinositides in human erythrocytes, Can. J. Biochem. 55:1007–1012.

    PubMed  CAS  Google Scholar 

  • Lassing, I., and Lindberg, V., 1985, Specific interaction between phosphatidylinositol 4,5-biphos- phate and profilactin, Nature 314:472–474.

    PubMed  CAS  Google Scholar 

  • Lawrence, T., Ginzberg, R., Gilula, N., Beers, W., 1979, Hormonally induced cell shape changes in cultured rat ovarian granulosa cells, J. Cell Biol. 80:21–36.

    PubMed  CAS  Google Scholar 

  • Leach, K., James, M., and Blumberg, P., 1983, Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol, Proc. Natl. Acad. Sci. USA 80:4208–4212.

    PubMed  CAS  Google Scholar 

  • Lee, L. S., and Weinstein, I. B., 1978, Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors, Science 202:313–315.

    PubMed  CAS  Google Scholar 

  • Leof, E. B., Wharton, N., O’Keefe, E., and Pledger, W. J., 1982, Elevated intracellular concentrations of cyclic AMP inhibited serum-stimulated, density arrested Balb/c-3T3 cells in mid Gl, J. Cell. Biochem. 19:93–103.

    CAS  Google Scholar 

  • Lin, C. R., Chen, W. S., Lazar, C. S., Carpenter, C. D., Gill, G. N., Evans, R. M., and Rosenfeld, M. G., 1986, Protein kinase C phosphorylation at the 654 of the unoccupied EGF receptor and EGF binding regulate functional receptor loss by independent mechanisms, Cell 44:839–848.

    PubMed  CAS  Google Scholar 

  • Lodhi, S., Weiner, N. D., and Schacht, J., 1979, Interactions of neomycin with monomolecular films of polyphosphoinositides and other lipids, Biochem. Biophys. Acta 557:1–8.

    PubMed  CAS  Google Scholar 

  • Luby-Phelps, K., Taylor, D., and Lanni, F., 1986, Probing the structure of cytoplasm, J. Cell Biol. 102:2015–2022.

    PubMed  CAS  Google Scholar 

  • Maclntyre, D. E., and Drummond, A. H., 1985, Tumour-promoting phorbol esters inhibit agonistinduced phosphotidate formation and Ca2+ flux in human platelets, FEBS Lett. 180:160–164.

    Google Scholar 

  • Majerus, P. W., Newfeld, E. J., and Wilson, D. B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701–703.

    PubMed  CAS  Google Scholar 

  • Malm, B., Persson, T., and Lindberg, U., 1981, Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor, Cell 23:145–153.

    Google Scholar 

  • Manalan, A., and Klee, C., 1984, Calmodulin, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 18:227–279.

    PubMed  CAS  Google Scholar 

  • Maness, P., 1981, Actin structure in fibroblasts: Its possible role in transformation and tumoregenesis, Cell Muscle Motil. 1:335–373.

    CAS  Google Scholar 

  • Marceau, N., and Swierenga, S., 1985, Cytoskeletal events during Ca2+- or EGF-induced initiation of DNA synthesis in cultured cells, in: Cell Muscle Motility ,Vol. 6 (J. Shay, ed.), Plenum Press, New York, pp. 97–140.

    Google Scholar 

  • Marcum, J., Dedman, J., Brankley, B., and Means, A., 1978, Control of microtubule assemblydisassembly by calcium-dependent regulator protein, Proc. Natl. Acad. Sci. USA 75:3771– 3775.

    PubMed  CAS  Google Scholar 

  • Markey, F., Larsson, H., Weber, K., and Lindberg, U., 1982, Nucleation of actin polymerization from profilactin opposite effects of different nuclei, Biochem. Biophys. Acta 704:43–51.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., and McKeehan, K. A., 1980, Serum factors modify the cellular requirement for Ca2+, K+, Mg2+, phosphate ions, and 2-oxocarboxylic acids for multiplication of normal human fibroblasts, Proc. Natl. Acad. Sci. USA 77:3417–3421.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., McKeehan, K. A., and Calkins, D., 1982, Epidermal growth factor modifies Ca2+, Mg2+, and 2-oxocarboxylic acid, but not K+ and phosphate ion requirement for multiplication of human fibroblasts, Exp. Cell Res. 140:25–30.

    PubMed  CAS  Google Scholar 

  • McNeil, P. L., McKenna, M. D., and Taylor, D. L., 1985, A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate, J. Cell Biol. 101:372–379.

    PubMed  CAS  Google Scholar 

  • Means, A., Tash, J., Chafouleas, J., Legace, L., and Guerriero, V., 1982, Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP, Ann. N.Y. Acad. Sci. 383:69–84.

    PubMed  CAS  Google Scholar 

  • Meigs, J., and Wang, Y.-L., 1986, Reorganization of alpha-actinin and vinculin induced by a phorbol ester in living cells, J. Cell Biol. 102:1430–1438.

    PubMed  CAS  Google Scholar 

  • Mellstrom, K., Hoglung, A., Nister, M., Heldin, C., Westermark, B., and Lindberg, U., 1983, The effect of platelet-derived growth factor on morphology and motility of human glial cells, J. Muscle Res. Cell. Motil. 4:589–609.

    Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta. 415:81–147.

    PubMed  CAS  Google Scholar 

  • Miller, S., Wolf, A., and Amaud, C, 1976, Bone cells in culture: Morphologic transformation by hormones, Science 192:1340–1343.

    PubMed  CAS  Google Scholar 

  • Mittal, A., and Bereiter-Hahn, J., 1985, Ionic control of locomotion and shape of epithelial cells: 1. Role of calcium influx, Cell Motil. 5:123–136.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Kruijer, W., Tilly, B. C., Verlaan, I., Bierman, A. J., and de Lat, S. W., 1986, Growth factor-like action of phosphatidic acid, Nature 323:171–173.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T., and de Laat, S. W., 1983, Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts, Nature 304: 645–648.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tertoolen, L. G. J., de Laat, S. W., 1984a, Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH, Nature 312:371–376.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tertoolen, L. G. J., and de Lat, S. W., 1984b, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.

    PubMed  CAS  Google Scholar 

  • Morris, J. D. H., Metcalfe, J. C., Smith, G. A., Heskieth, T. R., and Taylor, M. V., 1984, Some mitogens cause rapid increases in free calcium in fibroblasts, FEBS Lett. 169:189–193.

    PubMed  CAS  Google Scholar 

  • Mroczkoski, R., Mosig, G., and Cohen, S., 1984, ATP-stimulated interaction between epidermal growth factor and super-coiled DNA, Nature 309:270–273.

    Google Scholar 

  • Naccache, P. H., Molski, T. F. P., Borgeat, P., White, J. R., and Shaafi, R. I., 1985, Phorbol esters inhibit the fMet-Leu-Phe- and leukotrinene B4 stimulated calcium mobilization and enzyme secretion in rabbit neutrophils, J. Biol. Chem. 260:2125–2131.

    PubMed  CAS  Google Scholar 

  • Naka, M., Nishikawa, M., Adelstein, R., and Hidaka, H., 1983, Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains, Nature 306:490–492.

    PubMed  CAS  Google Scholar 

  • Nakamura, K. D., Martinez, R., and Weber, M. J., 1983, Tyrosine phosphorylation of specific proteins after mitogen stimulation of chicken embryo fibroblasts, Mol. Cell. Biol. 3:380–390.

    PubMed  CAS  Google Scholar 

  • Nicholson, N. B., Chen, S., Blank, G., and Pollack, R., 1984, SV40 transformation of Swiss 3T3 cells can cause a stable reduction in the calcium requirement for growth, J. Cell Biol. 99:2314–2321.

    PubMed  CAS  Google Scholar 

  • Niedel, J., Kuhn, L., and Vanderbank, G., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80:36–40.

    PubMed  CAS  Google Scholar 

  • Nilsson, J., Thyberg, J., Heldin, C. H., Westermark, B., and Wasteson, A., 1983, Surface binding and internalization of platelet-derived growth factor in human fibroblasts, J. Biol. Chem. 80:5592– 5596.

    CAS  Google Scholar 

  • Nishimura, J., and Deuel, T. F., 1981, Stimulation of protein phosphorylation in Swiss mouse 3T3 cells by platelet-derived growth factor, Biochem. Biophys. Res. Commun. 103:355–361.

    PubMed  CAS  Google Scholar 

  • Nishimura, J., Huang, J. S., and Deuel, T. F., 1982, Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss 3T3 cells membranes, Proc. Natl. Acad. Sci. USA 79:4303–4307.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1983, Phospholipid turnover and cyclic nucleotides in hormone research, in: Evolution of Hormone-Receptor Systems ,Alan R. Liss, New York, pp. 425–439.

    Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour production, Nature 308:693–698.

    PubMed  CAS  Google Scholar 

  • Ojakian, G., 1981, Tumor promotor-induced changes in the permeability of epithelial cell tight junctions, Cell 23:95–103.

    PubMed  CAS  Google Scholar 

  • Olashaw, N. E., O’Keefe, E. J., and Pledger, W. J., 1986, Platelet-derived growth factor modulates epidermal growth factor receptors by a mechanism distinct from that of phorbol esters, Proc. Natl. Acad. Sci. USA 83:3834–3838.

    PubMed  CAS  Google Scholar 

  • Olsnes, S., Tonnessen, T., and Sanding, K., 1986, pH-regulated anion antiport in nucleated mammalian cells, J. Cell Biol. 102:967–971.

    PubMed  CAS  Google Scholar 

  • O’Neill, C, Riddle, P., and Rozengurt, E., 1985, Stimulating the proliferation of quiescent 3T3 fibroblasts by peptide growth factors or by agents which elevate cellular cAMP level has opposite effects on motility, Exp. Cell Res. 156:65–78.

    PubMed  Google Scholar 

  • Orellana, S. A., Solski, P. A., and Brown, J. H., 1985, Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 260:5236– 5239.

    PubMed  CAS  Google Scholar 

  • Owen, N. E., and Villereal, M. L., 1982, Evidence for a role of calmodulin in serum stimulation of Na+ influx in human fibroblasts, Proc. Natl. Acad. Sci. USA 79:3537–3541.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B., Dubrow, R., Hamlin, J. L., and Kletzeen, R. F., 1978, Animal cell cycle, Annu. Rev. Biochem. 47:715–750.

    PubMed  CAS  Google Scholar 

  • Paris, S., and Rozengurt, E., 1982, Cyclic AMP stimulation of Na-K pump activity in quiescent Swiss 3T3 cells, J. Cell Physiol. 112:273–280.

    PubMed  CAS  Google Scholar 

  • Pastan, I., and Johnson, G. S., 1974, Cyclic AMP and the transformation of fibroblasts, in: Advances in Cancer Research (G. Klein, S. Weinhouse and A. Haddow, eds.), Academic Press, New York, pp. 303–329.

    Google Scholar 

  • Pastan, I. H., Johnson, G. S., Anderson, W. B., 1975, Role of cyclic nucleotides in growth control, Annu. Rev. Biochem. 44:491–668.

    PubMed  CAS  Google Scholar 

  • Pledger, W., Hart, C., Locatell, K., Scher, L., 1981, Platelet-derived growth factor-modulated proteins: Constitutive synthesis by a transformed cell line, Proc. Natl. Acad. Sci. USA 78:4358–4362.

    PubMed  CAS  Google Scholar 

  • Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 72:994–998.

    PubMed  CAS  Google Scholar 

  • Pouyssegur, J., Sardet, C., Franchi, A., L’Allemain, G., and Paris, S., 1984, A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblast precludes growth at neutral and aridic pH, Proc. Natl. Acad. Sci. USA 81:4833–4837.

    PubMed  CAS  Google Scholar 

  • Pouyssegur, J., Franchi, A., L’Allemain, G., and Paris, S., 1985, Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, Fed. Eur. Biochem. Soc. 190:115–119.

    CAS  Google Scholar 

  • Prentki, M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca2+ from rat insulinima microsomes by inositol-l,4,5-triphosphate, Nature 309:562–564.

    CAS  Google Scholar 

  • Pruss, R. M., and Herschman, H. R., 1979, Cholera toxin stimulates division of 3T3 cells, J. Cell Physiol. 98:469–473.

    PubMed  CAS  Google Scholar 

  • Puck, T., 1977, Cyclic AMP, the microtubule-microfilament system, and cancer, Proc. Natl. Acad. Sci. USA 74:4491–4495.

    PubMed  CAS  Google Scholar 

  • Quigley, J., 1979, Phorbol ester induced morphological changes in transformed chick fibroblasts: Evidence for direct catalytic involvement of plasminogen activator, Cell 17:131–141.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., 1980, Calcium and cAMP in stimulus-response coupling, Ann. N.Y. Acad. Sci. 356:346–353.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., Koijima, I., Koijima, K., Zawalich, N., and Apfeldorf, W., 1984, Calcium as intracellular messenger: Sensitivity modulation, C-kinase pathway, and sustained cellular release, Adv. Cyclic Nucleotide Protein. Phosphorylation Res. 18:159–193.

    CAS  Google Scholar 

  • Rebhun, L., 1977, Cyclic nucleotides, calcium, and cell division, Int. Rev. Cytol. 49:1–54.

    CAS  Google Scholar 

  • Rifkin, D., Crowe, R., and Pollack, R., 1979, Tumor promoters induce changes in the chick embryo fibroblast cytoskeleton, Cell 18:361–368.

    PubMed  CAS  Google Scholar 

  • Rink, T. J., and Hallam, T. J., 1984, What turns platelets on? Trends Biochem. Sci. 9:215–219.

    Google Scholar 

  • Ristow, H.-J., Frank, W., Frohlich, M., 1973, Stimulation of embryonic rat cells by calf serum. V. Metabolism of inositol and choline phospholipids. Z. Naturforsch. 28:188–194.

    CAS  Google Scholar 

  • Roos, A., and Boron, F., 1981, Intracellular pH, Physiol. Rev. 61:296–433.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, M. E., Bowen-Pope, D. F., and Ross, R., 1984, Platelet-derived growth factor-morphologic and biochemical studies of binding, internalization, and degradation, J. Cell Physiol. 121:263–274.

    CAS  Google Scholar 

  • Rosoff, P. M., and Cantley, L. C., 1985, Stimulation of the T3-T cell receptor-associated Ca2+ influx enhances the activity of the Na+/H+ exchanges in a leukemic human T cell line, J. Biol. Chem. 260:14053–14059.

    PubMed  CAS  Google Scholar 

  • Ross, R., and Vogel, A., 1978, The platelet-derived growth factor, Cell 14:203–210.

    PubMed  CAS  Google Scholar 

  • Ross, R., Raines, E. W., and Bowen-Pope, D. F., 1986, The biology of platelet-derived growth factor, Cell 46:155–169.

    PubMed  CAS  Google Scholar 

  • Rossow, P. W., Riddle, V. G. H., and Pardee, A. B., 1979, Synthesis of labile serum dependent protein in early G1 controls animal cell growth, Proc. Natl. Acad. Sci. USA 76:4446–4450.

    PubMed  CAS  Google Scholar 

  • Rothenberg, P., Glaser, L., Schlesinger, P., and Cassel, P., 1983, Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells, J. Biol. Chem 258: 12644–12653.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., 1981a, Stimulation of Na influx, Na-K pump activity, and DNA synthesis in quiescent cultured cells, Adv. Enzyme Regul. 19:61–85.

    CAS  Google Scholar 

  • Rozengurt, E., 1981b, Cyclic AMP: A growth-promoting signal for mouse 3T3 cells, Adv. Cyclic Nucleotide Res. 14:429–442.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., 1982a, Monovalent ion fluxes, cyclic nucleotides, and the stimulation of DNA synthesis in quiescent cells, in: Ions, Cell Proliferation, and Cancer (A. L. Boynton, W. L. McKeehan, and J. F. Whitfield, eds.), Academic Press, New York, pp. 259–281.

    Google Scholar 

  • Rozengurt, E., 1982b, Synergistic stimulation of DNA synthesis by cyclic AMP derivatives and growth factors in mouse 3T3 cells, J. Cell Physiol. 112:243–250.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., and Dicker, P., 1978, Stimulation of DNA synthesis by tumor promoter and pure mitogenic factors, Nature 276:723–726.

    PubMed  Google Scholar 

  • Rozengurt, E., Legg, A., Strang, G., Courtenay-Luck, N., 1981, Cyclic AMP: A mitogenic signal for Swiss 3T3 cells, Proc. Natl. Acad. Sci. USA 78:4392–4396.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., Stroobant, P., Waterfield, M. D., Deuel, T. F., and Keehan, M., 1983, Platelet-derived growth factor elicits cyclic AMP accumulation in Swiss 3T3 cells: Role of prostaglandin production, Cell 34:265–272.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., Rodriguez-Pena, A., Coombs, M., and Sinnett-Smith, J., 1984, Diacylglycerol stimulated DNA synthesis and cell division in mouse 3T3 cells: Role of Ca2+ sensitive phos- pholipid-dependent protein kinase, Proc. Natl. Acad. Sci. USA 81:5748–5752.

    PubMed  CAS  Google Scholar 

  • Rubin, H., 1971, pH and population density in the regulation of animal cell multiplication, J. Cell. Biol. 51:686–702.

    PubMed  CAS  Google Scholar 

  • Ryback, S. M., and Stockdale, F. E., 1981, Growth effects of lithium chloride in Balb/c 3T3 fibroblasts and Madin-Darby canine kidney epithelial cells, Exp. Cell Res. 136:263–270.

    Google Scholar 

  • Sagi-Eisenberg, R., Lieman, H., and Pecht, S., 1985. Protein kinase C regulation of the receptor-coupled calcium signal in histamine-secreting rat basophilic cells, Nature 313:59–60.

    PubMed  CAS  Google Scholar 

  • Salomon, P. S., 1981, Inhibition of epidermal growth factor binding to mouse embryonal carcinoma cells by phorbol esters mediated by specific phorbol ester receptors, J. Biol. Chem. 256:7958– 7966.

    PubMed  CAS  Google Scholar 

  • Sawyer, S. T., and Cohen, S., 1981, Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells, Biochemistry 20:6280–6286.

    PubMed  CAS  Google Scholar 

  • Scher, C. D., Shepard, R. C., Antoniades, H. N., and Stiles, C. D., 1979, Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle, Biochem. Biophys. Acta 560:217–241.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J., and Geiger, B., 1981, Epidermal growth factor induces redistribution of actin and actinin in human epidermal carcinoma cells, Exp. Cell Res. 134:273–279.

    PubMed  CAS  Google Scholar 

  • Schliwa, M., Nakamura, T., Porter, K. R., and Euteneur, U., 1984, A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells, J. Cell Biol. 99:1045–1059.

    PubMed  CAS  Google Scholar 

  • Sefton, B. M., and Hunter, T., 1984, Tyrosine protein kinases, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 18:195–225.

    PubMed  CAS  Google Scholar 

  • Seppa, H. E. J., Grotendorst, G. R., Seppä, S. I., Schiffman, E., Martin, G. R., 1982, The platelet-derived growth factor is a chemoattractant for fibroblasts, J. Cell Biol. 92:584–588.

    PubMed  CAS  Google Scholar 

  • Shoyab, M., De Larco, J. E., and Todaro, G. J., 1979, Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors, Nature 279:387–391.

    PubMed  CAS  Google Scholar 

  • Sibley, D. R., and Lefkowitz, R. J., 1985, Molecular mechanisms of receptor desensitization using the α-adrenergic receptor-coupled adenylate cyclase system as a model, Nature 317:124–129.

    PubMed  CAS  Google Scholar 

  • Silverstein, S., Steinman, R., and Cohn, Z., 1979, Endocytosis, Annu. Rev. Biochem. 46:669–722.

    Google Scholar 

  • Singh, T. J., Hochman, J., Verna, R., Chapman, M., Abraham, I., Pastan, I., and Gottesman, M. J., 1985, Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regular subunit of cyclic AMP-dependent protein kinase, J. Biol. Chem. 260:13927–13933.

    PubMed  CAS  Google Scholar 

  • Stiles, C. D., 1983, The molecular biology of platelet-derived growth factor, Cell 33:653.

    PubMed  CAS  Google Scholar 

  • Stoscheck, C. M., and Carpenter, G., 1984, Down regulation of epidermal growth factor receptors: Direct demonstration of receptor degradation in human fibroblasts, J. Cell Biol. 98:1048–1053.

    PubMed  CAS  Google Scholar 

  • Sutherland, E. W., 1972, Studies on the mechanisms of hormone action, Science 177:401–408.

    PubMed  CAS  Google Scholar 

  • Taylor, D., and Condeelis, J., 1979, Cytoplasmic structure and contractibility in amoeboid cells, Int. Rev. Cytol. 56:57–144.

    PubMed  CAS  Google Scholar 

  • Taylor, D. L., and Fecheimer, M., 1982, Cytoplasmic structure and contractility: the solationcontraction coupling hypothesis, Philos. Trans. R. Soc. Lond. [Biol.] 299:185–197.

    CAS  Google Scholar 

  • Taylor, D., and Wang, Y.-L., 1980, Fluorescently labelled molecules as probes of the structure and function of living cells, Nature 284:405–410.

    PubMed  CAS  Google Scholar 

  • Taylor, D., Wang, Y.-L., and Heiple, J., 1980, The contractile basis of amoeboid movement. VII. The distribution of fluorescently labeled actin in living amebas, J. Cell Biol. 86:590–598

    PubMed  CAS  Google Scholar 

  • Taylor, D., Amato, P., McNeil, P., Luby-Phelps, K., and Tanasugarn, L., 1986, Spatial and temporal dynamics of specific molecules and ions in living cells, in: Applications of Fluorescence in the Biomedical Sciences (D. Taylor, A. Waggoner, R. Murphy, F. Lanni, and R. Birge, eds.), Alan R. Liss, New York, pp. 347–376.

    Google Scholar 

  • Thyberg, J., 1984, The microtubular cytoskeleton and the initiation of DNA synthesis, Exp. Cell. Res. 155:1–8.

    PubMed  CAS  Google Scholar 

  • Tilney, L., 1975, Actin filaments in the acrosomal reaction of Limulus sperm, J. Cell Biol. 64:289– 310.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell Biol. 94:325–334.

    CAS  Google Scholar 

  • Tsuda, T., Kaibuchi, K., West, B., and Takai, Y., 1985, Involvement of Ca2+ in platelet-derived growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts, Fed. Eur. Biochem. Soc. 187:43–46.

    CAS  Google Scholar 

  • Ushiro, H., and Cohen, S., 1980, Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes, J. Biol. Chem. 255:8363–8365.

    PubMed  CAS  Google Scholar 

  • Vicentini, L. M., and Villereal, M. L., 1985, Activation of Na+/H+ exchange in cultured fibroblasts: Synergism and antagonism between phorbol ester, Ca2+ ionophore, and growth factors, Proc. Natl. Acad. Sci. USA 82:8053–8056.

    CAS  Google Scholar 

  • Waggoner, A., 1986, Fluorescent probes for analysis of cell structure, function, and health by flow and image cytometry, in: Applications of Fluorescence in the Biomedical Sciences (D. Taylor, A. Waggoner, R. Murphy, F. Lanni, and R. Birge, eds.), Alan R. Liss, New York, pp. 3– 28.

    Google Scholar 

  • Wang, E., and Goldberg, A., 1976, Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 73:4065–4069.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-L., 1985, Exchange of actin subunits at the leading edge of living fibroblasts; possible role of treadmilling, J. Cell Biol. 101:597–602.

    PubMed  CAS  Google Scholar 

  • Watson, S. P., and Lapetina, E. G., 1985, 1,2-diacylglycerol and phorbol ester inhibit agonistinduced formation of inositol phosphates in human platelets: Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. USA 82:2623–2626.

    PubMed  CAS  Google Scholar 

  • Werth, D., and Pastan, I., 1984, Vinculin phosphorylation in response to calcium and phorbol esters in intact cells, J. Biol. Chem. 259:5264–5270.

    PubMed  CAS  Google Scholar 

  • Wharton, W., Leof, E. B., Olashaw, N., Earp, H. S., and Pledger, W. J., 1982, Increases in cyclic AMP potentiate competence formation in Balb/C-3T3 cells, J. Cell. Physiol. 111:201–206.

    PubMed  CAS  Google Scholar 

  • Whitaker, M. J., and Steinhardt, R. A., 1982, Ionic regulation of egg activation, Q. Rev. Biophys. 15:593–666.

    PubMed  CAS  Google Scholar 

  • White, J. R., Huang, L. K., Hill, J., Naccache, P. H., Becker, E. L., and Shaafi, R. I., 1984, Effect of phorbol 12-myristate 13-acetate and its analogue 4,-phorbol 12, 13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils, J. Biol. Chem. 259:8605–8611.

    PubMed  CAS  Google Scholar 

  • Whitely, B., Cassel, D., Zuang, U., and Glaser, L., 1984, Tumor promoter phorbol 12-myristate acetate inhibits mitogen-stimulated Na+/H+ exchange in human epidermal carcinoma A431 cells, J. Cell Biol. 99:1162–1166.

    Google Scholar 

  • Whitely, B., Duel, T., and Glaser, L., 1985, Modulation of the activity of the platelet-derived growth factor receptor by phorbol myristate acetate, Biochem. Biophys. Res. Commun. 129:854–861.

    Google Scholar 

  • Whitfield, J. F., 1982, The roles of calcium and magnesium in cell proliferation: An overview, in: Ions, Cell Proliferation, and Cancer (A. L. Boynton, W. L. McKeehan, and J. F., Whitfield, eds.), Academic Press, New York, pp. 283–294.

    Google Scholar 

  • Whitfield, J. F., MacManus, J. P., and Gillan, D. J., 1970, The possible mediation by cyclic AMP of the stimulation of thymocyte proliferation by vassopressin and the inhibition of this mitogenic action by throcalcitonin, J. Cell Physiol. 76:65–76.

    PubMed  CAS  Google Scholar 

  • Whitfield, J. F., MacManus, J. P., Rixon, R. H., Boynton, A. L., Youdale, T., and Swierenga, S. H. H., 1976, The positive control of cell proliferation by the interplay of calcium ions and cyclic nucleotides-A review, In Vitro 12:1–18.

    PubMed  CAS  Google Scholar 

  • Willingham, M., 1976, Cyclic AMP and cell behavior in cultured cells, Int. Rev. Cytol. 44:319–363.

    PubMed  CAS  Google Scholar 

  • Willingham, M., and Pastan, I., 1975, Cyclic AMP and cell morphology in cultured fibroblasts, J. Cell Biol. 67:146–159.

    PubMed  CAS  Google Scholar 

  • Zetterberg, A., and Engstrom, W., 1981, Mitogenic effect of alkaline pH on quiescent, serum-starved cells, Proc. Natl. Acad. Sci. USA 78:4334–4338.

    PubMed  CAS  Google Scholar 

  • Zetterberg, A. W., and Larsson, O., 1985, Kinetic analysis of regulatory events in Gl leading to proliferation or quiescence of Swiss 3T3 cells, Proc. Natl. Acad. Sci. USA 82:5365–5369.

    PubMed  CAS  Google Scholar 

  • Zigmond, S., 1982, Polymorphonuclear leukocyte response to chemotactic gradients, in: Cell Be havior (R. Bellaris, A. Curtis, and G. Dunn, eds.), Cambridge University Press, London, p. 183.

    Google Scholar 

  • Zigmond, S., and Hirsch, J., 1973, Leukocyte locomotion and chemotaxis: New methods for evaluation and demonstration of cell-derived chemotactic factor, J. Exp. Med. 137:387–400.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

McNeil, P.L., Taylor, D.L. (1987). Early Cytoplasmic Signals and Cytoskeletal Responses Initiated by Growth Factors in Cultured Cells. In: Elson, E., Frazier, W., Glaser, L. (eds) Cell Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1915-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1915-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9065-0

  • Online ISBN: 978-1-4613-1915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics