Skip to main content

Neuronal Antigens Involved in Cell Adhesion and Cell Recognition

  • Chapter
Cell Membranes

Abstract

With the introduction of immunological methods, particularly the hybridoma technology of Kohler and Milstein (1975), major advances have been made in our understanding of neuronal function. An important application of monoclonal antibodies in neurobiology has been the use of these probes to identify antigens that are restricted to specific neural cell types. Monoclonal antibodies have also been used to identify, purify, and then characterize antigens that are required for neuronal cell adhesion and cell recognition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson, R., and Graham, K. L., 1981, A new antigen common to the rat nervous and immune systems: 1. Detection with a hybridoma, J. Neurosci. Res. 6:165–177.

    PubMed  CAS  Google Scholar 

  • Akiyama, S. K., Yamada, S. S., and Yamada, K. M., 1986, Characterization of a 140-kD avian cell surface antigen as a fibronectin-binding molecule, J. Cell Biol. 102:442–448.

    PubMed  CAS  Google Scholar 

  • Allen W. K., and Akeson, R., 1985, Identification of a cell surface glycoprotein family of olfactory receptor neurons with a monoclonal antibody, J. Neurosci. 5:284–296.

    PubMed  CAS  Google Scholar 

  • Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in the rat retina, Nature 286:231–235.

    PubMed  CAS  Google Scholar 

  • Barnstable, C. J., and Drager, U. C., 1984, Thy-1 antigen: A ganglion cell specific marker in rodent retina, Neuroscience 11:847–855.

    PubMed  CAS  Google Scholar 

  • Barnstable, C. J., Hofstein, R., and Akagawa, K., 1985, A marker of early amacrine cell development in rat retina, Dev. Brain Res. 20:286–290.

    CAS  Google Scholar 

  • Beug, H., Katz, F. E., and Gerisch, G., 1973, Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum, J. Cell Biol. 56:647–658.

    PubMed  CAS  Google Scholar 

  • Bock, E., Richter-Landsberg, C., Faissner, A., and Schachner, M., 1985, Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1. EMBO J. 4:2765–2768.

    PubMed  CAS  Google Scholar 

  • Bolin, L. M., and Rouse, R. V., 1986, Localization of Thy-1 expression during postnatal development of the mouse cerebellar cortex. J. Neurocytol. 15:29–36.

    PubMed  CAS  Google Scholar 

  • Boucaut, J.-C., Darribere, T., Poole, T. J., Aoyama, H., Yamada, K. M., and Thiery, J. P., 1984, Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99:1822–1830.

    PubMed  CAS  Google Scholar 

  • Brackenbury, R., Thiery, J. P., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252:6835–6840.

    PubMed  CAS  Google Scholar 

  • Bronner-Fraser, M., 1985, Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J. Cell Biol. 101:610–617.

    PubMed  CAS  Google Scholar 

  • Buskirk, D. R., Thiery, J. P., Rutishauser, U., and Edelman, G. M., 1980, Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chicken retinae. Nature 285:488–489.

    PubMed  CAS  Google Scholar 

  • Caddy, K. W. T., Patterson, D. L., and Biscoe, T. J., 1982, Use of the UCHT1 monoclonal antibody to explore mouse mutants and development, Nature 300:441–443.

    PubMed  CAS  Google Scholar 

  • Carbonetto, S., Gruver, M. M., and Turner, D. C., 1983, Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates, J. Neurosci. 3:2324–2335.

    PubMed  CAS  Google Scholar 

  • Chou, D. K. H., Schwarting, G. A., and Jungalwala, F. B., 1986, Sulfated glucuronyl glycolipids in the nervous system, Trans. Am. Soc. Neurochem. 17:146.

    Google Scholar 

  • Chuong, C.-M., and Edelman, G. M., 1984, Alterations in neural cell adhesion molecules during development of different regions of the nervous system, J. Neurosci. 4:2354–2368.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., and Glaser, L., 1984a, Identification of novel neural-and neural retina-specific antigens with a monoclonal antibody, Proc. Natl. Acad. Sci. USA 81:2260–2264.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., and Glaser, L., 1984b, Inhibition of embryonic neural retina cell-substratum adhesion with a monoclonal antibody, J. Biol. Chem. 259:4031–4034.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., and Glaser, L., 1984c, Cell-substratum adhesion in embryonic chick central nervous system is mediated by a 170,000-mol. wt. neural-specific polypeptide, J. Cell Biol. 99:1605–1612.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., and Glaser, L., 1986, A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion, J. Cell Biol. 102:403–412.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., Schubert, D., and Glaser, L., 1985, Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions, J. Cell Biol. 100:1192–1199.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., Bond, R., and Glaser, L., 1986a, Monoclonal antibodies specific for ganglion cells in the embryonic chicken neural retina, Dev. Brain Res. 26:133–143.

    Google Scholar 

  • Cole, G. J., Loewy, A., and Glaser, L., 1986b, Neuronal cell-cell adhesion depends on interactions on N-CAM with heparin-like molecules, Nature 320:445–447.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., Loewy, A., Cross, N. V., Akeson, R., and Glaser, L., 1986c, Topographic localization of the heparin-binding domain of the neural cell adhesion molecule N-CAM, J. Cell Biol. 103:1739–1744.

    PubMed  CAS  Google Scholar 

  • Cole, G. J., Maimone, M, Tollefson, D., Loewy, A., and Glaser, L., 1987, Characterization of heparin binding to the neural cell adhesion molecule N-CAM, Exp. Cell. Res. (submitted).

    Google Scholar 

  • Collins, F., 1985, Electrophoretic similarity of the ciliary ganglion survival factors from different tissues and species, Dev. Biol. 109:255–258.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., Pitts, E. C., and Reh, T. A., 1983, The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog, J. Comp. Neurol. 218:297–313.

    PubMed  CAS  Google Scholar 

  • Covault, J., and Sanes, J. R., 1985, Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscle, Proc. Natl. Acad. Sci. USA 82:4544–4548.

    PubMed  CAS  Google Scholar 

  • Crossin, K. L., Edelman, G. M., and Cunningham, B. A., 1984, Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule, J. Cell Biol. 99:1848–1855.

    PubMed  CAS  Google Scholar 

  • Cuello, A. C., 1983, Monoclonal antibody immunohistochemistry. Applications in research and diagnosis, Acta Histochem. 28:S9–S15.

    Google Scholar 

  • Cuello, A. C., Milstein, C., Couture, R., Wright, B., Priestley, J. V., and Jarvis, J., 1984, Characterization and immunocytochemical application of monoclonal antibodies against enkephalins, J. Histochem. Cytochem. 32:947–957.

    PubMed  CAS  Google Scholar 

  • Cunningham, B. A., Hoffman, S., Rutishauser, U., Hemperly, J. J., and Edelman, G. M., 1983, Molecular topography of the neural cell adhesion molecule N-CAM: Surface orientation and location of sialic acid-rich and binding regions, Proc. Natl. Acad. Sci. USA 80:3116–3120.

    PubMed  CAS  Google Scholar 

  • D’Eustachio, P., Owens, G. C., Edelman, G. M., and Cunningham, B. A., 1985, Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse, Proc. Natl. Acad. Sci. USA 82:7631–7635.

    PubMed  Google Scholar 

  • Dodd, J., Solter, D., and Jessell, T. M., 1984, Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurones, Nature 311:469–472.

    PubMed  CAS  Google Scholar 

  • Drager, U. C, Edwards, D. L., and Barnstable, C. J., 1984, Antibodies against filamentous components in discrete cell types of the mouse retina, J. Neurosci. 4:2025–2042.

    PubMed  CAS  Google Scholar 

  • Duband, J.-L., Rocher, S., Chen, W.-T., Yamada, K. M., and Thiery, J. P., 1986, Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibro-nectin receptor complex, J. Cell Biol. 102:160–178.

    PubMed  CAS  Google Scholar 

  • Dubois, C., Magnani, J. L., Grunwald, G. B., Spitalnik, S. L., Trisler, G. D., Nirenberg, M., and Ginsburg, V., 1986, Monoclonal antibody 18B8, which detects synapse-associated antigens, binds to ganglioside GT3 (II3(NeuAc)3LacCer), J. Biol. Chem. 267:3826–3830.

    Google Scholar 

  • Edelman, G. M., 1983, Cell adhesion molecules, Science 219:450–457.

    PubMed  CAS  Google Scholar 

  • Edelman, G. M., and Chuong, C.-M., 1982, Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice, Proc. Natl. Acad. Sci. USA 79:7036–7040.

    PubMed  CAS  Google Scholar 

  • Edgar, D., Timpl, R., and Thoenen, H., 1984, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J. 3:1463–1468.

    PubMed  CAS  Google Scholar 

  • Elfman, L., Kynoch, P. A. M., Siddle, K., and Thompson, R. J., 1986, Rat and mouse monoclonal antibodies to human myelin basic protein, J. Neurosci. 46:509–515.

    CAS  Google Scholar 

  • Faissner, A., Kruse, J., Goridis, C., Bock, E., and Schachner, M., 1984a, The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2, EMBO J. 3:733–737.

    PubMed  CAS  Google Scholar 

  • Faissner, A., Kruse, J., Nieke, J., and Schachner, M., 1984b, Expression of neural cell adhesion molecule LI during development, in neurological mutants, and in the peripheral nervous system, Dev. Brain Res. 15:69–82.

    CAS  Google Scholar 

  • Favilla, J. T., Frail, D. E., Palkovits, C. G., Stoner, G. L., Braun, P. E., and Webster, H., 1984, Myelin-associated glycoprotein (MAG) distribution in human central nervous tissue studied immunocytochemically with monoclonal antibody J. Neuroimmunol. 6:19–30.

    PubMed  CAS  Google Scholar 

  • Fields, K. L., and Dammerman, M., 1985, A monoclonal antibody equivalent to anti-rat neural antigen-1 as a marker for Schwann cells, Neuroscience 15:877–885.

    PubMed  CAS  Google Scholar 

  • Fraser, S. E., Murray, B. A., Chuong, C.-M., and Edelman, G. M., 1984, Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules, Proc. Natl. Acad. Sci. USA 81:4222–4226.

    PubMed  CAS  Google Scholar 

  • Fredman, P., Magnani, J. L., Nirenberg, M., and Ginsburg, V., 1984, Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue, Arch. Biochem. Biophys. 233:661–666.

    PubMed  CAS  Google Scholar 

  • Friedlander, D. R., Brackenbury, R., and Edelman, G. M., 1985, Conversion of embryonic form to adult forms of N-CAM in vitro: Results from de novo synthesis of adult forms, J. Cell Biol. 101:412–419.

    PubMed  CAS  Google Scholar 

  • Friedlander, D. R., Grumet, M., and Edelman, G. M., 1986, Nerve growth factor enhances expression of neuron-glia cell adhesion in PC12 cells, J. Cell Biol. 102:413–419.

    PubMed  CAS  Google Scholar 

  • Fry, K. R., Tavella, D., Su, Y. Y. T., Peng, Y. W., Watt, C. B., and Lam, D. M. K., 1985, A monoclonal antibody specific for retinal ganglion cells of mammals, Brain Res. 338:360–365.

    PubMed  CAS  Google Scholar 

  • Ghandour, M. S., Foucaud, B., and Gombos, G., 1984, Monoclonal antibodies specific for glial and neuronal antigens on the young rat cerebellum, Neurosci. Lett. 51:119–125.

    PubMed  CAS  Google Scholar 

  • Goridis, C., Hirn, M., Santoni, M.-J., Gennarini, G., Deagostini-Bazin, H., Jordan, B. R., Kiefer, M., and Steinmetz, M., 1985, Isolation of mouse NCAM-related cDNA: Detection and cloning using monoclonal antibodies, EMBO J. 4:631–635.

    PubMed  CAS  Google Scholar 

  • Gottlieb, D. I., Chang, Y.-C., and Schwob, J. E., 1986, Monoclonal antibodies to glutamic acid decarboxylase, Proc. Natl. Acad. Sci. USA 83:8808–8812.

    PubMed  CAS  Google Scholar 

  • Greene, L. A., and Tischler, A. S., 1976, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. USA 73:2424–2428.

    PubMed  CAS  Google Scholar 

  • Greve, J. M., and Gottlieb, D. I., 1982, Monoclonal antibodies which alter the morphology of cultured chick myogenic cells, J. Cell. Biochem. 18:221–229.

    PubMed  CAS  Google Scholar 

  • Grumet, M., and Edelman, G. M., 1984, Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule, J. Cell Biol. 98:1746–1756.

    PubMed  CAS  Google Scholar 

  • Grumet, M., Rutishauser, U., and Edelman, G. M., 1982, Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro, Nature 295:693–695.

    PubMed  CAS  Google Scholar 

  • Grumet, M., Hoffman, S., and Edelman, G. M., 1984a, Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc. Natl. Acad. Sci. USA 81:267–271.

    PubMed  CAS  Google Scholar 

  • Grumet, M., Hoffman, S., Chuong, C.-M., and Edelman, G. M., 1984b, Polypeptide components and binding functions of neuron-glia cell adhesion molecules, Proc. Natl. Acad. Sci. USA 81:7989–7993.

    PubMed  CAS  Google Scholar 

  • Grumet, M., Hoffman, S., Crossin, K. L., and Edelman, G. M., 1985, Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interactions, Proc. Natl. Acad. Sci. USA 82:8075–8079.

    PubMed  CAS  Google Scholar 

  • Guerci, A., Monge, M., Baron-Van Evercooren, A., Lubetzki, C., Dancea, S., Boutry, J. M., Goujet-Zalc, C., and Zalc, B., 1986, Schwann cell marker defined by a monoclonal antibody (224–58) with species cross-reactivity. 1. Cellular localization, J. Neurochem. 46:425–434.

    PubMed  CAS  Google Scholar 

  • Gulcher, J. R., Marton, L. S., and Stefansson, K., 1986, Two large glycosylated polypeptides found in myelinating oligodendrocytes but not in myelin, Proc. Natl. Acad. Sci. USA 83:2118–2122.

    PubMed  CAS  Google Scholar 

  • Hatten, M. E., Furie, M. B., and Rifkin, D. B., 1982, Binding of developing mouse cerebellar cells to fibronectin: A possible mechanism for the foundation of the external granular layer, J. Neurosci. 2:1195–1206.

    PubMed  CAS  Google Scholar 

  • Hawkes, R., Niday, E., and Matus, A., 1982, Monoclonal antibodies identify novel neural antigens, Proc. Natl. Acad. Sci. USA 79:2410–2414.

    PubMed  CAS  Google Scholar 

  • Hempstead, J. L., and Morgan, J. I., 1985, A panel of monoclonal antibodies to the rat olfactory epithelium, J. Neurosci. 5:438–449.

    PubMed  CAS  Google Scholar 

  • Henke-Fahle, S., and Bonhoeffer, F., 1983, Inhibition of axonal growth by a monoclonal antibody, Nature 303:65–67.

    PubMed  CAS  Google Scholar 

  • Him, M., Ghandour, M. S., Deagostini-Bazin, H., and Goridis, C., 1983, Molecular heterogeneity and structural evolution during cerebellar ontogeny detected by monoclonal antibody of the mouse cell surface antigen BSP-2, Brain Res. 265:87–100.

    Google Scholar 

  • Ho, R. K., and Goodman, C. S., 1982, Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos, Nature 297:404–406.

    PubMed  CAS  Google Scholar 

  • Hoffman, S., Sorkin, B. C, White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membrane, J. Biol. Chem. 257:7720–7729.

    PubMed  CAS  Google Scholar 

  • Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA 80:5762–5766.

    PubMed  CAS  Google Scholar 

  • Horwitz, A., Duggan, K., Greggs, R., Decker, C., and Buck, C., 1985, The cell attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin, J. Cell Biol. 101:2134–2144.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., and Yamada, K. M., 1982, Fibronectin: Multifunctional modular glycoproteins, J. Cell Biol. 95:369–377.

    PubMed  CAS  Google Scholar 

  • Johannsen, S., and Hook, M., 1984, Substrate adhesion of rat hepatocytes: On the mechanism of attachment to fibronectin, J. Cell Biol. 98:810–817.

    Google Scholar 

  • Jorgensen, O. S., Delouvee, A., Thiery, J. P., and Edelman, G. M., 1980, The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia, FEBS Lett. 111:39–42.

    PubMed  CAS  Google Scholar 

  • Keilhauer, G., Faissner, A., and Schachner, M., 1985, Differential inhibition of neurone-neurone, neurone-astrocyte, and astrocyte-astrocyte adhesion by L1, L2, and N-CAM antibodies, Nature 316:728–730.

    PubMed  CAS  Google Scholar 

  • Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.

    PubMed  CAS  Google Scholar 

  • Kotrla, K. J., and Goodman, C. S., 1984, Transient expression of a surface antigen on a small subset of neurones during embryonic development, Nature 311:151–153.

    PubMed  CAS  Google Scholar 

  • Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C., and Schachner, M., 1984, Neural cell adhesion molecules and myelin-associated glycoprotein share a carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature 311:153–155.

    PubMed  CAS  Google Scholar 

  • Kruse, J., Keilhauer, G., Faissner, A., Timpl, R., and Schachner, M., 1985, The Jl glycoprotein-A novel nervous system cell adhesion molecule of the L2-HNK-1 family, Nature 316:146–148.

    PubMed  CAS  Google Scholar 

  • Lagenaur, C., and Schachner, M., 1981, Monoclonal antibody (M2) to glial and neuronal cell surfaces, J. Supramol. Struct. Cell. Biochem. 15:335–346.

    PubMed  CAS  Google Scholar 

  • Lander, A. D., Fujii, D. K., and Reichardt, L. F., 1985, Laminin is associated with the “neuritepromoting factors” found in conditioned medium. Proc. Natl. Acad. Sci. USA 82:2183–2187.

    PubMed  CAS  Google Scholar 

  • Lawson, S. N., Harper, A. A., Harper, E. I., Garson, J. A., and Anderton, B. H., 1984, A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurons, J. Comp. Neurol. 228:263–272.

    PubMed  CAS  Google Scholar 

  • Leah, J., Gynther, B., and , C., 1984, A chick neural antigen identified by monoclonal antibodies, Int. J. Dev. Neurosci. 2:517–527.

    Google Scholar 

  • Lemmon, V., 1985, Monoclonal antibodies specific for glia in the chick nervous system, Dev. Brain Res. 23:111–120.

    Google Scholar 

  • Lemmon, V., 1986, Localization of a filamin-like protein in glia of the chick central nervous system, J. Neurosci. 6:43–51.

    PubMed  CAS  Google Scholar 

  • Lemmon, V., and Gottlieb, D. I., 1982, Monoclonal antibodies selective for the inner portion of the chick retina, J. Neurosci. 2:531–535.

    PubMed  CAS  Google Scholar 

  • Lemmon, V., Staros, E. B., Perry, H. E., and Gottlieb, D. I., 1982, A monoclonal antibody which binds to the surface of chick brain cells and myotubes: Cell selectivity and properties of the antigen, Dev. Brain Res. 3:349–360.

    CAS  Google Scholar 

  • Levine, J. M., Beasley, L., and Stallcup, W. B., 1984, The Dl.l antigen: A cell surface marker for germinal cells of the central nervous system, J. Neurosci. 4:820–831.

    PubMed  CAS  Google Scholar 

  • Lindner, J., Rathjen, F. G., and Schachner, M., 1983, LI mono-and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum, Nature 305:427–430.

    PubMed  CAS  Google Scholar 

  • McGuire, J., Greene, L., and Furano, A., 1978, NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC 12 pheochromocytoma cells, Cell 15:357–365.

    PubMed  CAS  Google Scholar 

  • McKay, R. D. G., and Hockfield, S. J., 1982, Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system, Proc. Natl. Acad. Sci. USA 79:6747–6751.

    PubMed  CAS  Google Scholar 

  • McKay, R., Johansen, J., and Hockfield, S., 1984, Monoclonal antibody identifies a 63,000 dalton antigen found in all central neuronal cell bodies but in only a subset of axons in the leech, J. Comp. Neurol. 226:448–455.

    PubMed  CAS  Google Scholar 

  • Meyer, R., 1982, Tetrodotoxin blocks the formation of ocular columns in goldfish, Science 218:589–591.

    PubMed  CAS  Google Scholar 

  • Miller, R. H., Williams, J., and Raff, M. C., 1984, A4: An antigenic marker of neural tube-derived cells, J. Neurocytol. 13:329–338.

    PubMed  CAS  Google Scholar 

  • Mirsky, R., and Jessen, K. R., 1984, A cell surface protein of astrocytes, Ran-2, distinguishes non-myelin-forming Schwann cells from myelin-forming Schwann cells, Dev. Neurosci. 6:304–316.

    CAS  Google Scholar 

  • Morris, R. J., Beech, J. N., Barber, P. C, and Raisman, G., 1985a, Early stages of Purkinje cell maturation demonstrated by Thy-1 immunohistochemistry on postnatal rat cerebellum, J. Neu rocytol. 14:427–452.

    CAS  Google Scholar 

  • Morris, R. J., Beech, J. N., Barber, P. C., and Raisman, G., 1985b, Late emergence of Thy-1 on climbing fibres demonstrates a gradient of maturation from the fissures to the follal convexities in developing rat cerebellum, J. Neurocytol. 14:453–467.

    PubMed  CAS  Google Scholar 

  • Murray, B. A., Hemperly, J. J., Gallin, W. J., MacGregor, J. S., Edelman, G. M., and Cunningham, B. A., 1984, Isolation of cDNA clones for the chicken neural cell adhesion molecule (N-CAM), Proc. Natl. Acad. Sci. USA 81:5584–5588.

    PubMed  CAS  Google Scholar 

  • Murray, B. A., Hemperly, J. J., Prediger, E. A., Edelman, G. M., and Cunningham, B. A., 1986, Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM), J. Cell Biol. 102:89–193.

    Google Scholar 

  • Neff, N. T., Lowrey, C., Tovar, A., Decker, C, Damsky, C, Buck, C., and Horwitz, A., 1982, A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices, J. Cell Biol. 95:654–666.

    PubMed  CAS  Google Scholar 

  • Noble, M., Albrechtsen, M., Moller, C., Lyles, J., Bock, E., Goridis, C., Watanabe, M., and Rutishauser, U., 1985, Glial cells express N-CAM/D2-CAM-like polypeptides in vitro, Nature 316:725–728.

    PubMed  CAS  Google Scholar 

  • Park, D. H., Teitelman, G., Evinger, M. J., Woo, J. I., Ruggiero, D. A., Albert, V. R., Baetge, E. E., Pickel, V. M., Reis, D. J., and Joh, T. H., 1986, Phenylethanolamine N-methyltrans-ferase-containing neurons in rat retina: Immunohistochemistry, immunochemistry, and molecular biology, J. Neurosci. 6:1108–1113.

    PubMed  CAS  Google Scholar 

  • Perry, V. H., Morris, R. J., and Raisman, G., 1984, Is Thy-1 expressed only by ganglion cells and their axons in the retina and optic nerve? J. Neurocytol. 13:809–824.

    PubMed  CAS  Google Scholar 

  • Pessac, B., Girard, A., Romey, G., Crisanti, P., Lorinet A., and Calothy, G., 1983, A neuronal clone derived from a Rous sarcoma virus-transformed quail embryo neuroretina established culture, Nature 302:616–618.

    PubMed  CAS  Google Scholar 

  • Pierschbacher, M. D., Hayman, F. G., and Ruoslahti, E., 1981, Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule, Cell 26:259–267.

    PubMed  CAS  Google Scholar 

  • Pigott, R., and Kelly, J. S., 1984, A cell surface antigen present on cultured cerebellar neurones appears to be transiently expressed during cerebellar development in the rat, Neurosci. Lett. 49:105–110.

    PubMed  CAS  Google Scholar 

  • Plioplys, A. V., Thibault, J., and Hawkes, R., 1985, Selective staining of a subset of Purkinje cells in the human cerebellum with monoclonal antibody mabQ113, J. Neurolog. Sci. 70:245–256.

    CAS  Google Scholar 

  • Pollerberg, E. G., Sadoul, R., Goridis, C., and Schachner, M., 1985, Selective expression of the 180-kD component of the neural cell adhesion molecule N-CAM during development, J. Cell Biol. 101:1921–1929.

    PubMed  CAS  Google Scholar 

  • Price, J., and Hynes, R. O., 1985, Astrocytes in culture synthesize and secrete a variant form of fibronectin, J. Neurosci. 5:2205–2211.

    PubMed  CAS  Google Scholar 

  • Pytela, R., Pierschbacher, M., and Ruoslahti, E., 1985, Identification and isolation of a 140-kD cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40:191–198.

    PubMed  CAS  Google Scholar 

  • Quaries, R. H., Everly, J. L., and Brady, R. O., 1973, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21:1177–1191.

    Google Scholar 

  • Ranscht, B., Moss, D. J., and Thomas, C., 1984, A neuronal surface glycoprotein associated with the cytoskeleton, J. Cell Biol. 99:1803–1813.

    PubMed  CAS  Google Scholar 

  • Rathjen, F. G., and Rutishauser, U., 1984, Comparison of two cell surface molecules involved in neural cell adhesion, EMBO J. 3:461–465.

    PubMed  CAS  Google Scholar 

  • Rathjen, G., and Schachner, M., 1984, Immunocytological and biochemical characterization of a newneuronal cell surface component (L1 antigen) which is involved in cell adhesion, EMBO J. 3:1–10.

    PubMed  CAS  Google Scholar 

  • Regan, L. J., Dodd, J., Barondes, S. H., and Jessell, T.M., 1986, Selective expression of endogenous lactose-binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons, Proc. Natl. Acad. Sci. USA 83:2248–2252.

    PubMed  CAS  Google Scholar 

  • Reh, T. A., Pitts, E. C., and Constantine-Paton, M., 1983, The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens, J. Comp. Neurol. 218:297–313.

    PubMed  Google Scholar 

  • Rieger, F., Grumet, M., and Edelman, G. M., 1985, N-CAM at the vertebrate neuromuscular junction, J. Cell Biol. 101:285–293.

    PubMed  CAS  Google Scholar 

  • Riopelle, R. J., McGarry, R. C., and Roder, J. C, 1986, Adhesion properties of a neuronal epitope recognized by the monoclonal antibody HNK-1, Brain Res. 367:20–25.

    PubMed  CAS  Google Scholar 

  • Rogers, S. L., McCarthy, J. B., Palm, S. L., Furcht, L. T., and Letourneau, P. C, 1985, Neuron-specific interactions with two neurite-promoting fragments of fibronectin, J. Neurosci. 5:369–378.

    PubMed  CAS  Google Scholar 

  • Rothbard, J. B., Brackenbury, R., Cunningham, B. A., and Edelman, G. M., 1982, Differences in the carbohydrate structures of neural cell adhesion molecules from adult and embryonic brains, J. Biol. Chem. 257:11064–11069.

    PubMed  CAS  Google Scholar 

  • Rougon, G., and Marshak, D. R., 1986, Structural and immunological characterization of the amino-terminal domain of mammalian neural cell adhesion molecules, J. Biol. Chem. 261:3396–3401.

    PubMed  CAS  Google Scholar 

  • Rougon, G., Deagostini-Bazin, H., Girsch, M., and Goridis, C.,. 1982, Tissue-and developmental stage-specific forms of a neural cell surface antigen linked to differences on glycosylation of a common polypeptide, EMBO J. 1:1239–1244.

    PubMed  CAS  Google Scholar 

  • Rougon, G., Hirn, M., Hirsch, M. R., Guenet, J. L., and Goridis, C., 1984, Identification and immunolocalization by monoclonal antiobody of NSP-5, a surface polypeptide of neural cells, J. Neuroimmunol. 6:411–426.

    PubMed  CAS  Google Scholar 

  • Ruoslahti, E., Hayman, E. G., Engvall, E., Cothran, W. C., and Butler, W. T., 1981, Alignment of biologically active domains in the fibronectin molecule, J. Biol. Chem. 256:7277–7281.

    PubMed  CAS  Google Scholar 

  • Russoff, A. C., and Easter, S. S., 1980, Order in the optic nerve of goldfish, Science 208:311–312.

    Google Scholar 

  • Rutishauser, U., 1984, Developmental biology of a neural cell adhesion molecule, Nature 310:549–554.

    PubMed  CAS  Google Scholar 

  • Rutishauser, U., Gall, W. E., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. IV. Relationship of the cell surface molecule CAM in the formation of neurite bundles in cultures of spoinal ganglia, J. Cell Biol. 79:382–393.

    PubMed  CAS  Google Scholar 

  • Rutishauser, U., Hoffman, S., and Edelman, G. M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79:685–689.

    PubMed  CAS  Google Scholar 

  • Rutishauser, U., Grumet, M., and Edelman, G. M., 1983, N-CAM mediates initial interactions between spinal cord neurons and muscle cells in culture, J. Cell Biol. 97:145–152.

    PubMed  CAS  Google Scholar 

  • Rutishauser, U., Watanabe, M., Silver, J., Troy, F. A., and Vimr, E. R., 1985, Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase, J. Cell Biol. 101:1842–1849.

    PubMed  CAS  Google Scholar 

  • Sadoul, R., Him, M., Deagostini-Bazin, H., Rougon, G., and Goridis, C., 1983, Adult and embryonic mouse neural cell adhesion molecules have different binding properties, Nature 304:347–349.

    PubMed  CAS  Google Scholar 

  • Sajovic, P., Moraru, E., Greene, L. A., and Shelanski, M. L., 1986, Selective staining of large projection neurons by monoclonal antibody to a glycoprotein of PC12 cells, J, Nmtqwu 6:82–93.

    CAS  Google Scholar 

  • Salton, S., Richter-Landsberg, C., Greene, L., and Shelanski, M., 1983, Nerve growth factor-inducible large external (NILE) glycoprotein: Studies of a central and peripheral neuronal marker, J. Neurosci. 3:441–454.

    PubMed  CAS  Google Scholar 

  • Sanes, J., Schachner, M., and Covault, J., 1986, Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle, J. Cell Biol. 102:420–431.

    PubMed  CAS  Google Scholar 

  • Schachner, M., Faissner, A., Kruse, J., Lindner, J., Meier, D. H., Rathjen, F. G., and Wernecke, H., 1983, Cell type specificity and developmental expression of neural cell-surface components involved in cell interactions and of structurally related molecules, Cold Spring Harbor Symp. Quant. Biol. 48:557–568.

    PubMed  CAS  Google Scholar 

  • Schachner, M., Sommer, I., and Lagenaur, C., 1984, Expression of glial antigens C1 and Ml in the peripheral nervous system during development and regeneration, Dev. Brain Res. 14:165–178.

    Google Scholar 

  • Schmidt, J. T., and Edwards, D. L., 1983, Activity sharpens the map during the regeneration of the retinotectal projection in goldfish, Brain Res. 269:29–39.

    PubMed  CAS  Google Scholar 

  • Schnitzer, J., Kim, S. U., and Schachner, M., 1984a, Specificity of monoclonal antibody Nl for cell surfaces of mouse central nervous system neurons, Dev. Brain Res. 15:21–32.

    Google Scholar 

  • Schnitzer, J., Kim, S. U., and Schachner, M., 1984b, Some immature tetanus toxin-positive cells share antigenic properties with subclasses of glial cells. An immunofluorescence study in the developing nervous system of the mouse using a new monoclonal antibody S1, Dev. Brain Res. 16:203–217.

    Google Scholar 

  • Scholes, J. H., 1979, Nerve fibre topography in the retinal projection of the tectum, Nature 278:620–624.

    PubMed  CAS  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1985a, Isolation of a cell surface receptor for chick neural retina adherens, J. Cell Biol. 100:56–63.

    PubMed  CAS  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1985b, Isolation of an adhesion-mediating protein from chick neural retina adherons, J. Cell Biol. 101:1071–1077.

    PubMed  CAS  Google Scholar 

  • Schubert, D., LaCorbiere, M., Klier, F. G., and Birdwell, C., 1983, A role for adherons in retinal cell adhesion, J. Cell Biol. 96:990–998.

    PubMed  CAS  Google Scholar 

  • Schubert, D., LaCorbiere, M., and Esch, F., 1986, A chick neural retina adhesion and survival molecule is a retinol-binding protein, J. Cell Biol. 102:2295–2301.

    PubMed  CAS  Google Scholar 

  • Schwartz, M., and Eshhar, N., 1984, Early regenerative responses induced by monoclonal antibodies directed against a cell surface glycoprotein of goldfish retinal ganglion cells, EMBO J. 3:1287–1293.

    PubMed  CAS  Google Scholar 

  • Schwob, J. E., Farber, N. B., and Gottlieb, D. I., 1986, Neurons of the olfactory epithelial in adult rats contain vimentin, J. Neurosci. 6:208–217.

    PubMed  CAS  Google Scholar 

  • Silver, J., and Rutishauser, U., 1984, Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet, Dev. Biol. 106:485–499.

    PubMed  CAS  Google Scholar 

  • Sommer, I., and Schachner, M., 1981, Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system, Dev. Biol. 83:311–327.

    PubMed  CAS  Google Scholar 

  • Sorge, L. K., Levy, B. T., and Maness, P. F., 1984, pp60csrc is developmentally regulated in the neural retina, Cell 36:249–257.

    PubMed  CAS  Google Scholar 

  • Stallcup, W. B., and Beasley, L., 1985, Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neurite fasciculation in primary cultures of rat brain, Proc. Natl. Acad. Sci. USA 82:1276–1280.

    PubMed  CAS  Google Scholar 

  • Stallcup, W. B., Arner, L., and Levine, J., 1983, An antiserum against the PC12 cell line defines cell surface antigens specific for neurons and Schwann cells, J. Neurosci. 3:53–68.

    PubMed  CAS  Google Scholar 

  • Sternberger, L. A., Harwell, L. W., and Sternberger, N. H., 1982, Neurotypy: Regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:1326–1330.

    PubMed  CAS  Google Scholar 

  • Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Websteer, H. deF., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Natl. Acad. Sci. USA 76:1510–1514.

    PubMed  CAS  Google Scholar 

  • Thanos, S., and Bonhoeffer, F., 1984, Development of the transient ipsilateral retinotectal projection in the chick embryo: A numerical fluorescence-microscopic analysis, J. Comp. Neurol. 224:407–414.

    PubMed  CAS  Google Scholar 

  • Thanos, S., Bonhoeffer, F., and Rutishauser, U., 1984, Fiber-fiber interactions and tectal cues influence the development of the chick retinotectal projection, Proc. Natl. Acad. Sci. USA 81:1906–1910.

    PubMed  CAS  Google Scholar 

  • Thiery, J, P., Brackenbury, R., Rutishauser, U., and Edelman, G, M., 1977, Adhesion among neural cells of chick retina. II. Purification and characterization of cell adhesion molecule from neural retina, J. Biol Chem. 252:6841–6845.

    PubMed  CAS  Google Scholar 

  • Trisler, G. D., Schneider, M. D., and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Natl. Acad. Sci. USA 78:2145–2149.

    PubMed  CAS  Google Scholar 

  • Vincent, M., and Thiery, J. P., 1984, A cell surface marker for neural crest and placodal cells: Further evolution in peripheral and central nervous system, Dev. Biol. 103:468–481.

    PubMed  CAS  Google Scholar 

  • Vulliamy, T., Rattray, S., and Mirsky, R., 1981, Cell-surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones, Nature 291:418–420.

    PubMed  CAS  Google Scholar 

  • Webb, M., and Woodhams, P. L., 1984a, Monoclonal antibodies recognising cell surface molecules expressed by rat cerebellar interneurons, J. Neuroimmunol. 6:283–300.

    PubMed  CAS  Google Scholar 

  • Webb, M., and Woodhams, P. L., 1984b, Recognition by a mouse monoclonal antibody of a glycoprotein antigen of rab brain which is expressed intracellularly by neurons, Neuroscience 13:583–594.

    PubMed  CAS  Google Scholar 

  • Weber, A., and Schachner, M., 1984, Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture, Brain Res. 311:119–130.

    PubMed  CAS  Google Scholar 

  • Williams, R. K., Goridis, C., and Akeson, R., 1985, Individual neural cell types express immunologically distinct N-CAM forms, J. Cell Biol. 101:36–42.

    PubMed  CAS  Google Scholar 

  • Williams, R. K., Kelly, P. T., and Akeson, R. A., 1985, Cell-surface antigens of developing rat cerebellar neurons: Identification with monoclonal antibodies, Dev. Brain Res. 19:253–266.

    CAS  Google Scholar 

  • Wood, J. N., Hudson, L., Jessell, T. M., and Yamamoto, M., 1982, A monoclonal antibody defining antigenic determinants on subpopulations of mammalian neurones and Trypanosoma cruzi parasites, Nature 296:34–38.

    PubMed  CAS  Google Scholar 

  • Yamada, K. M., 1983, Cell surface interactions with extracellular materials, Annu. Rev. Biochem. 52:761–799.

    PubMed  CAS  Google Scholar 

  • Yamada, K. M., Kennedy, D. W., Kimata, K., and Pratt, R. M., 1980, Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments, J. Biol. Chem. 255:6055–6063.

    PubMed  CAS  Google Scholar 

  • Yamakuni, T., Usui, H., Iwanaga, T., Kondo, H., Odani, S., and Takahashi, Y., 1984, Isolation and immunohistochemical localization of a cerebellar protein, Neurosci. Lett. 45:235–240.

    PubMed  CAS  Google Scholar 

  • Young, L. H. Y., and Dowling, J. E., 1984, Monoclonal antibodies distinguish subtypes of retinal horizontal cells, Proc. Natl. Acad. Sci. USA 81:6255–6259.

    PubMed  CAS  Google Scholar 

  • Zipser, B., and McKay, R., 1981, Monoclonal antibodies distinguish identifiable neurones in the leech, Nature 289:549–554.

    PubMed  CAS  Google Scholar 

  • Zipursky, S. L., Venkatesh, T. R., and Benzer, S., 1985, From monoclonal antibody to gene for a neuron-specific glycoprotein in Drosophila, Proc. Natl. Acad. Sci. USA 82:1855–1859.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Cole, G.J., Bond, R.W. (1987). Neuronal Antigens Involved in Cell Adhesion and Cell Recognition. In: Elson, E., Frazier, W., Glaser, L. (eds) Cell Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1915-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1915-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9065-0

  • Online ISBN: 978-1-4613-1915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics