Skip to main content

Nicotinic Modulation of Dopaminergic Neurotransmission: Functional Implications

  • Chapter
Tobacco Smoking and Nicotine

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 31))

Abstract

There is substantial evidence from diverse sources to indicate an important interactive relationship between the cholinergic and dopaminergic systems in brain. It has been known for some time that dopaminergic agonists and antagonists exert a profound influence on the release, turnover, or concentration of striatal acetylcholine (ACh) (1–5). In general, the findings from such studies have suggested that the function of dopaminergic nigrostriatal fibers is to exert a tonic inhibitory influence on cholinergic interneurons. Likewise, cholinergic agents also seem to exert an effect on dopaminergic function. Systemic injections of muscarinic cholinergic agonists have been found to enhance the synthesis (6) and utilization (7–10) of striatal as well as mesolimbic dopamine (DA). Muscarinic antagonists, on the other hand, appear to reduce the rate of utilization of dopamine (6, 11–15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartholini, G, Lloyd, KG and Stadler, H: The effect of drugs on the release of striatal neurotransmitters. CINP IX Congress. J. Pharmacol. (Paris), 5 ,suppl I: 60, 1974.

    Google Scholar 

  2. Guyenet, PG, Agid, Y, Javoy, F, Beaujouan, JC, Rossier, J and Glowinski, J: Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system. Brain Res. 84: 227–244, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Ladinsky, H, Consalo, S, Bianchi, S, Samanim, R and Ghezgi, D: Cholinergic dopaminergic interaction in the striatum: the effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine, piribedil and d-amphetamine. Brain Res. 84: 221–226, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Stadler, H, Lloyd, KG, Gadea Ciria, M and Bartholini, G: Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorpliine. Brain Res. 55: 476–480, 1973.

    Article  PubMed  CAS  Google Scholar 

  5. Trabucchi, M, Cheney, D, Racogni, G and Costa, E: Involvement of brain cholinergic mechanisms in the action of chlorpromazine. Nature (London), 219: 664–666, 1974.

    Article  Google Scholar 

  6. Javoy, F, Agid, Y and Glowinski, J: Oxotremorine and atropine induced changes of dopamine metabolism in the rat striatum. J. Pharm. Pharmacol. 27: 677–681, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Carrodi, H, Fuxe, K, Hammer, W, Sjoqvist, F and Ungerstedt, U: Oxotremorine and central monoamine neurons. Life Sci. 6: 2557–2566, 1967.

    Article  Google Scholar 

  8. Laverty, R and Sharman, DF: Modification by drugs of the metabolism of 3–4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Brit. J. Pharmacol. 24: 759–763, 1965.

    PubMed  CAS  Google Scholar 

  9. Nose, T and Takemato, H: Effect of oxotremorine on homovanillic acid concentration in the striatum of the rat. Eur. J. Pharmacol. 25: 51–55, 1976.

    Article  Google Scholar 

  10. Westerink, BC and Korf, J: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 38: 281–291, 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Anden, NE and Bedard, P: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 22: 460–462, 1971.

    Article  Google Scholar 

  12. Bartholini, G and Pletscher, A: Atropine-induced changes of cerebral dopamine turnover. Experientia, 27: 1302, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Carrodi, H, Fuxe, K and Lidbrink, K: Interaction between cholinergic and catecholaminergic neurons in rat brain. Brain Res. 43: 397–416, 1972.

    Article  Google Scholar 

  14. Hitzeman, RJ, Loh, HH and Domino, E: Effect of scopolamine on the cerebral accumulation of l4C-catecholamines for l4C-tyrosine. Pharmacology, 8: 291–299, 1972.

    Article  Google Scholar 

  15. O’Keefe, R, Sharman, DF and Vogt, M: Effect of drugs used in psychoses on cerebral dopamine metabolism. Brit. J. Pharmacol. 382: 287–304, 1970.

    Google Scholar 

  16. Lichtensteiger, W, Felix, D, Lienhart, R and Hefti, F: A quantitative correlation between single unit activity and fluorescence intensity of dopamine neurons in zona compacta of substantia nigra, as demonstrated under the influence of nicotine and physostigmine. Brain Res. 117: 85–103, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Lichtensteiger, W: Effect of electrical stimulation on the fluorescence intensity of catecholamine-containing tuberal nerve cells. J. Physiol. (London), 218: 63–84, 1971.

    CAS  Google Scholar 

  18. Lichtensteiger, W, Felix F, Hefti, F and Schlumpf: Effects of nicotine on dopamine neurons of adult and prenatal mammals and of invertebrates. In (eds) Remond, A and Izard C, Electrophysiological Effects of Nicotine, 15–30, Elsevier/North-Holland Biomedical Press, 1979

    Google Scholar 

  19. Fuxe, K, Agnati, L, Enerath, P, Gustafsean, J-A, Hakfelt, T, Lofstrom, A, Skett, B and Skett, P: The effect of nicotine on central catecholamine neurons and gonadotropin secretion. I. Studies in the male rat. Medical Biology, 55: 148–157, 1977.

    CAS  Google Scholar 

  20. Anderson, K, Fuxe, K and Agnati, LF: Effects of single injections of nicotine in the rat. Acta Physiol. Scand. 112: 345–347, 1981.

    Article  Google Scholar 

  21. Lichtensteiger, W, Hefti, F, Felix, D, Huwyler, T, Melamed, E and Schlumpf, M: Stimulation of nigrostriatal dopamine neurons by nicotine. Neuropharmacol. 21: 963–968, 1982.

    Article  CAS  Google Scholar 

  22. Ahtee, L and Kaakkola, S: Effects of mecamylamine on the fate of dopamine in striatal and mesolimbic areas of rat brain; interaction with morphine and haloperidol. Br. J. Pharmacol. 62: 213–218, 1978.

    PubMed  CAS  Google Scholar 

  23. Kato, G, Carson, S, Kernel, ML, Glowinski, J and Giorguieff, MF: Changes in striatal specific 3H-atropine binding after unilateral 6-hydroxydopamine lesions of the nigrostriatal dopaminergic neurons. Life Sci. 22: 1607–1614, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. McGeer, PC, Grewald, DS and McGeer, EG: Influence of noncholinergic drugs on rat striatal acetylcholine levels. Brain Res. 80: 211–217, 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Guyenet, PG, Agid, Y, Javoy, F, Beaurjauan, SC, Rauier, J and Glowinski, J: Effect of dopaminergic receptor agonists and antagonists on the activity of the neo-striatal cholinergic system. Brain Res. 84: 227–244, 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Ladinsky, H, Consolo, S, Bianchi, S, Samanin, R and Ghezzi, D: Cholinergic-dopaminergic interaction in the striatum: The effect of 6-hydroxydopamine on pimozide treatment on the increased striatal acetylcholine levels induced by amorphine, piribedil and d-amphetamine. Brain Res. 84: 221–226, 1975.

    Article  PubMed  CAS  Google Scholar 

  27. Racogni, G, Cheney, DL, Zsilla, G and Costa, E: The measurement of acetylcholine turnover in the rat brain structures. Neuropharmacol. 15: 723–726, 1976.

    Article  Google Scholar 

  28. Nieollon, A, Cheramy, A and Glowinski, J: Interdependence of the nigrostriatal dopaminergic systems on the two sides of the brain in the cat. Science 198: 416–418, 1977.

    Article  Google Scholar 

  29. de Belleroche, J, Lugmani, Y and Bradford, HF: Evidence for presynaptic cholinergic receptors on dopaminergic terminals: degeneration studies with 6-hydroxydopamine. Neuroscience Letters II: 209–213, 1979.

    Article  Google Scholar 

  30. Suga, M: Effects of long-term L-dopa administration on the dopaminergic and cholinergic (muscarinic) receptors of striatum in 6-hydroxydopamine lesioned rats. Life Sci. 27: 877–882, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Namura, Y, Kajiyama, H, Nakata, Y and Segua, T: Muscarinic cholinergic binding in striatal and mesolimbic areas of the rat: reduction by 6-hydroxydopa. Europ. J. Pharmacol. 18: 125–131, 1979.

    Article  Google Scholar 

  32. Gurwitz, D, Kloog, Y, Egazi, Y and Sokalovsky, M: Central muscarinic receptor degeneration following 6-hydroxydopamine lesion in mice. Life Sci. 26: 79–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. McGeer, PL, McGeer, EG and Innanen, VT: Dendro axonic transmission. I. Evidence from receptor binding of dopaminergic and cholinergic agents. Brain Res. 169: 433–441, 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Reisine, TD, Nagy, JI, Beaumont, K, Fibiger, HC and Yamamura, HI: The localization of receptor binding sites in the substantia nigra and striatum of the rat. Brain Res. 177: 241–252, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Hruska, RE, Schwarcz, R, Coyle, JT and Yamamura, HI: Alterations of muscarinic cholinergic receptors in the rat striatum after kainic acid injections. Brain Res. 152: 620–625, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz, RD, Lehmann, J and Kellar. KJ: Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J. Neurochem. 42: 1495–1498, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke, PBS and Pert, A: Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 348: 355–358, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Clarke, PBS, Pert, CB and Pert, A: Autoradiographic distribution of nicotine receptors in rat brain. Brain Res. 323: 390–395, 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke, PBS, Schwartz, RD, Paul, SM, Pert, CB and Pert, A: Nicotine binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-nicotine and 125I-alpha-bungarotoxin.J. Neursci. 5: 1307–1315, 1985.

    CAS  Google Scholar 

  40. Amenta, F, Bernardi, G, Floris, V and Marciani, MG: Localization of alpha-bungarotoxin binding sites within the rat corpus striatum. Neuropharmacol. 18: 319–322, 1979.

    Article  CAS  Google Scholar 

  41. Segal, M, Dudai, Y and Amsterdam, A: Distribution of an alpha-bungarotoxin-binding cholinergic nicotinic receptor in rat brain. Brain Res. 148: 105–109, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Besson, MI, Cheramy, A, Feltz, P and Glowinski, J. Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc. Nat. Acad. Sci. 62: 741–748, 1969.

    Article  PubMed  CAS  Google Scholar 

  43. Westfall, TC: Effect of muscarinic agonists on the release of 3H-norepinephrine and 3H-dopamine by potassium and electrical stimulation from rat brain slices. Life Sci. 14: 1641–1652, 1974.

    Article  PubMed  CAS  Google Scholar 

  44. de Belleroche, JS and Bradford, HF: Presynaptic control of the synthesis and release of dopamine from striatal synaptosomes: a comparison between the effects of 5-hydroxytryptamine, acetylcholine and glutamate. J. Neurochem. 35: 1227–1234, 1980.

    Article  PubMed  Google Scholar 

  45. Muscholl, E: Presynaptic muscarinic receptors and inhibition of release. In (ed.) Paton, DM, The release of catecholamines from adrenergic neurons, 87–110, Pergamon Press, Oxford, 1979.

    Google Scholar 

  46. Bartholini, G and Stadler, H: Cholinergic and GABA-ergic influence on the dopamine release in extrapyramidal centers. In (eds.) Almgren, O, Carlsson, A and Engel, J, Chemical tools in catecholamine research Vol. II, 235–241, North-Holland Publishing Co., 1975.

    Google Scholar 

  47. Giorguieff-Chesselet, MF, Kernel, ML and Glowinski, J: The presynaptic stimulating effect of acetylcholine on dopamine release is suppressed during activation of nigro-striatal dopaminergic neurons in the cat. Neurosci. Letters 14: 177–182, 1979.

    Article  CAS  Google Scholar 

  48. Giorguieff, MF, Le Floc’h, ML, Westfall, TC, Glowinski, J and Besson, MJ: Nicotinic effect of acetylcholine on release of newly synthesized [3H]dopamine in rat striatal slices and cat caudate nucleus. Brain Res. 106: 117–131, 1976.

    Article  PubMed  CAS  Google Scholar 

  49. Giorguieff, MF, Le Floc’h ML, Glowinski, J and Besson, MJ: Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J. Pharmacol. Exp. Ther. 200: 535–544, 1977.

    PubMed  CAS  Google Scholar 

  50. Raiteri, M, Marchi, M and Maura, G: Presynaptic muscarinic receptors increase striatal dopamine release evoked by quasi-physiological depolarization. Europ. J. Pharmacol. 83 127–129, 1982.

    Article  CAS  Google Scholar 

  51. de Belleroche, JS and Gardiner, IM: Cholinergic action in the nucleus accumbens: modulation of dopamine and acetylcholine release. Br. J. Pharmacol. 75: 359–365, 1982.

    PubMed  Google Scholar 

  52. Lehmann, J and Langer, SZ: Muscarinic receptors on dopamine terminals in the cat caudate nucleus: neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine. Brain Res. 248: 61–69, 1982.

    Article  PubMed  CAS  Google Scholar 

  53. Westfall, TC: Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacol. 13: 693–700, 1974.

    Article  CAS  Google Scholar 

  54. Sakurai, Y, Takano, Y, Kahjimoto, Y, Honda, K and Kamiya, H-O: Enhancement of [3H]dopamine release and its [3H] metabolites in rat striatum by nicotinic drugs. Brain Res. 242: 99–106, 1982.

    Article  PubMed  CAS  Google Scholar 

  55. Marien, M, Brien, J and Jhamandas, K: Regional release of [3H]dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Can. J. Physiol. Pharmacol. 61: 43–60, 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Argueros, L, Naquira, D and Zunino, E: Nicotine-induced release of catecholamines from rat hippocampus and striatum. Biochem. Pharmacol. 27: 2267–2674, 1978.

    Google Scholar 

  57. Giorguieff-Chesselet, MF, Kennel, ML, Wandscheer, D and Glowinski, J: Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci. 25: 1257–1262, 1979.

    Article  PubMed  CAS  Google Scholar 

  58. Massey, SC and James, TA: The uptake of tritiated choline and tritiated acetylcholine in the rat substantia nigra. Life Sci. 23: 345–350, 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Butcher, LL and Talbot, K: Acetylcholinesterase in rat nigro-striatal neurons. In. (ed.) Butcher, LL, Cholinergic-monoaminergic interactions in the brain, 25–95, Academic Press, New York, 1978.

    Google Scholar 

  60. James, TA and Massey, S: Evidence for a possible dopaminergic link in the action of acetylcholine in the rat substantia nigra. Neuropharmacology 17: 687–690, 1978.

    Article  PubMed  CAS  Google Scholar 

  61. Costall, B, Naylor, RJ and Olley, JE: Catalepsy and circling behavior after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain. Neuropharmacol. 11: 645–663, 1972.

    Article  CAS  Google Scholar 

  62. De Montis, GM, Olianos, MC, Serra, G, Tagliamonte, A and Scheel-Kruger, J: Evidence that a nigra GABAergic-cholinergic balance controls posture. Eur. J. Pharmacol. 53: 181–190, 1979.

    Article  PubMed  Google Scholar 

  63. Javoy, F, Agido, Y, Bouvet, D and Glowinski, J: Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra. Brain Res. 68: 253–260, 1974.

    Article  PubMed  CAS  Google Scholar 

  64. Nashold, BS, Urbaniak, JR and Hatcher, MA: Chemical stimulation of red nucleus, substantia nigra and basis pedunculi in alert cats. Neurology 15: 604–612, 1965.

    PubMed  Google Scholar 

  65. Clarke, PBS, Pert, A, Hommer, DW and Skirboll, LR: Electrophysiological actions of nicotine on substantia nigra single units. Brit. J. Pharmacol. 85: 527–533, 1985.

    Google Scholar 

  66. Dray, A and Straughan, DW: Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 28: 400–405, 1976.

    Article  PubMed  CAS  Google Scholar 

  67. Aghajanian, GK and Bunney, BS: Dopaminergic and non-dopaminergic neurons in the substantia nigra: different responses to putative transmitters. In (eds.) Boissier, Jr, Hippius, H and Pichat, P, Proceedings 9th International Congress of the CINP, 444–452, Amsterdam, Excerpta Medica, 1974.

    Google Scholar 

  68. Collinridge, GL and Davies, J: The influence of striatal stimulation and putative neurotransmitters on identified neurons in the rat substantia nigra. Brain Res. 212, 345–359, 1981.

    Article  Google Scholar 

  69. Pinnock, RD and Dray, A: Differential sensitivity of presumed dopaminergic and non-dopaminergic neurons in rat substantia nigra to electrophoretically applied Substance P. Neurosci. Letters 29: 153–158, 1982.

    Article  CAS  Google Scholar 

  70. Armstrong, DM, Saper, CB, Levey, AI, Wainer, BH and Terry, RD: Distribution of cholinergic neurons in rat brain: demonstrated by immunocytochemical localization of choline acetyltransferase. J. Comp. Neurol. 21: 53–68, 1983.

    Article  Google Scholar 

  71. Mesulam, M-M, Mufson, EJ, Wainer, BH and Levey, AI: Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl to Ch6). Neuroscience 10: 1185–1201, 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Satoh, K, Armstrong, DM and Fibiger, HC: A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltranferase immunohistochemistry. Brain Res. Bull. 11: 693–720, 1983.

    Article  PubMed  CAS  Google Scholar 

  73. Nagy, JI, Vincent, SR, Lehmann, J, Fibiger, HC and McGeer, EG: The use of kainic acid in the localization of enzymes in the substantia nigra. Brain Res. 149: 431–441, 1978.

    Article  PubMed  CAS  Google Scholar 

  74. Olivier, A, Parent, A, Simard, H and Poirier, LI: Cholinesterasic striatopollidal and striatonigral efferents in the cat and the monkey. Brain Res. 18: 273–282, 1970.

    Article  PubMed  CAS  Google Scholar 

  75. Fonnum, F, Grofova, I, Rinvik, E, Storm-Mathisen, J and Walberg, F: Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res. 71: 77–92, 1974.

    Article  PubMed  CAS  Google Scholar 

  76. McGeer, PL, McGeer, EG, Fibiger, HC and Wickson, V: Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res. 35: 308–314, 1971.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Gerfen, CR, Staines, WA, Arbuthnott, GW and Fibiger, HC: Crossed connections of the substantia nigra in the rat. J. Comp. Neurol. 207: 283–303, 1982.

    Article  PubMed  Google Scholar 

  78. Jackson, A and Crossman, AR: Nucleus tegmental pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neurosci. 10: 725–765, 1983.

    Article  CAS  Google Scholar 

  79. Clarke, PBS and Kumar, R: Characterization of the locomotor stimulant action of nicotine in tolerant rats. Br. J. Pharmacol. 80: 587–594, 1983.

    PubMed  CAS  Google Scholar 

  80. Clarke, PBS and Kumar, R: The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br. J. Pharmacol. 78: 329–337, 1983.

    PubMed  CAS  Google Scholar 

  81. Morrison, CF and Stephenson, JA: The occurrence of tolerance to the central depressant effect of nicotine. Br. J. Pharmacol. 46: 151–156, 1972.

    PubMed  CAS  Google Scholar 

  82. Stolerman, IP, Fink, R and Jarvick, ME: Acute and chronic tolerance to nicotine measured by activity in rats. Psychopharmacol. 30: 329–342, 1973.

    Article  CAS  Google Scholar 

  83. Battig, K, Driscoll, P, Schlatter, J and Uster, HI: Effects of nicotine on the exploratory locomotion patterns of female Roman high-and low-avoidance rats. Pharmacol. Biochem. Behav. 4: 435–439, 1976.

    Article  PubMed  CAS  Google Scholar 

  84. Barthelemy, C, Tremblay, E and Jacob, I: Comparison de divers antagonistes de l’eserine et de la nicotine chez la souris. J. Pharmacol. (Paris) I:-369–382, 1970.

    Google Scholar 

  85. Morrison, CF, Goodyear, JM and Sellors, CM: Antagonism of antimuscarinic and ganglion-blocking drugs of some of the behavioral effects of nicotine. Psychopharmacol. 15: 341–350, 1969.

    Article  CAS  Google Scholar 

  86. Beninger, RJ: The role of dopamine in locomotor activity and learning. Brain Res. 6: 173–196, 1983.

    Article  CAS  Google Scholar 

  87. Costall, B and Naylor, RJ: Behavioral aspects of dopamine agonists and antagonists. In-(eds.) Horn, AS, Karf, J and Westink, BHC, The Neurobiology of Dopamine, 555–576, Academic Press, London, 1979.

    Google Scholar 

  88. Ungerstedt, U: Central dopamine mechanisms and behavior. In (eds.) Horn, AS, Korf, J and Westerink, BHC, The Neurobiology of Dopamine, 577–596, Academic Press, London, 1979.

    Google Scholar 

  89. Romano, C, Goldstein, A and Jewell, NP: Characterization of the receptor mediating the nicotine discriminative stimulus. Psychopharmacol. 74: 315–320, 1981.

    Google Scholar 

  90. Romano, C and Goldstein, A: Stereospecific nicotine receptors on rat brain membranes. Science 210: 647–649, 1980.

    Article  PubMed  CAS  Google Scholar 

  91. Anden, NE, Dahlstrom, A, Fuxe, K and Larsson, K: Functional role of the nigrostriatal dopamine neurons. Acta Pharmac. Tox. 24: 262–274, 1966.

    Google Scholar 

  92. Ungerstedt, U: Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol. Scand. 32, Suppl. 367: 49–68, 1971.

    CAS  Google Scholar 

  93. Kaakkola, S: Effect of nicotinic and muscarinic drugs on amphetamine-and apomorphine-induced circling behavior in rats. Acta Pharmacol. et Toxicol 48: 162–167, 1981.

    Article  CAS  Google Scholar 

  94. Latiff, AA, Smith, LA and Lang, WJ: Effects of changing dosage and urinary pH in rats self-administering nicotine on a food delivery schedule. Pharm. Biochem. Behav. 13: 209–213, 1980.

    Article  CAS  Google Scholar 

  95. Risner, ME and Goldberg, SR: A comparison of nicotine and cocaine self-administration in the dog. Fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J. Pharmacol. Exp. Ther. 224: 319–326, 1983.

    PubMed  CAS  Google Scholar 

  96. Goldberg, SR, Spealman, RD and Goldberg, DM: Persistent high-rate behavior maintained by intravenous self-administration of nicotine. Science 214: 573–575, 1981.

    Article  PubMed  CAS  Google Scholar 

  97. Dougherty, I, Miller, D, Todd, G and Kostenbauder, HB: Reinforcing and other behavioral effects of nicotine. Neurosci. Biobehav. Res. 5: 487–495, 1981.

    Article  CAS  Google Scholar 

  98. Ator, N and Griffiths, RR: Nicotine self-administration in baboons. Pharm. Biochem. Behav. 19: 993–1003, 1983.

    Article  CAS  Google Scholar 

  99. Johnston, LM: Tobacco smoking and nicotine. Lancet 2: 742, 1942.

    Google Scholar 

  100. Jasinski, DR, Johnson, RE and Henningfield, JE: Abuse liability assessment in human subjects. Trends Pharmacol. Sci. May: 196–200, 1984.

    Google Scholar 

  101. Jasinski, DR, Haertzen, CA, Henningfield, JE, Johnson, RE, Makhazaumi, HM and Miyasato, K. Progress report of the NIDA Addiction Research Center, 45–52, 1982.

    Google Scholar 

  102. Henningfield, JE, Miyasato, K and Jasinski, DR: Cigarette smokers self-administer intravenous nicotine. Pharm. Biochem. Behav. 19: 887–890, 1983.

    Article  CAS  Google Scholar 

  103. Henningfield, JE and Goldberg, SR: Control of behavior by intravenous nicotine injections in human subjects. Pharmacol. Biochem. Behav. 19: 1021–1026, 1983.

    Article  PubMed  CAS  Google Scholar 

  104. Davis, WM and Smith, SG: Blocking effect of alpha-methyltyrosine on amphetamine based reinforcement. J. Pharm. Pharmacol. 25: 174–177, 1973.

    Article  PubMed  CAS  Google Scholar 

  105. Davis, WM and Smith, SG: Effect of haloperidol on (+)-amphetamine self-administration. J. Pharm. Pharmacol. 27: 540–542, 1975.

    Article  PubMed  CAS  Google Scholar 

  106. De Wit, H and Wise, RA: Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Canad. J. Psychol. 31: 195–203, 1977.

    Article  PubMed  Google Scholar 

  107. Yokel, RA and Wise, RA: Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48: 311–318, 1976.

    Article  PubMed  CAS  Google Scholar 

  108. Yokel, RA and Wise, RA: Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187: 547–549, 1975.

    Article  PubMed  CAS  Google Scholar 

  109. Risner, ME and James, BE: Role or noradrenergic and dopaminergic processes in amphetamine self-administration. Pharmacol. Biochem. Behav. 5: 477–482, 1976.

    Article  PubMed  CAS  Google Scholar 

  110. Lyness, WH, Friedle, NM and Moore, KE: Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharm. Biochem. Behav. 11: 553–556, 1979.

    Article  CAS  Google Scholar 

  111. Roberts, DCS, Corcorn, ME and Fibiger, HC: On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharm. Biochem. Behav. 6: 615–620, 1977.

    Article  CAS  Google Scholar 

  112. Roberts, DCS, Koob, GF, Klonoff, P and Fibiger, HC: Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharm. Biochem. Behav. 12: 781–787, 1980.

    Article  CAS  Google Scholar 

  113. Bozarth, MA and Wise, RA: Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci. 28: 551–555, 1981.

    Article  PubMed  CAS  Google Scholar 

  114. Phillips, AG and Le Piane, FG: Reinforcing effects of morphine microinjected into the ventral tegmental area. Pharmacol. Biochem. Behav. 12: 965–968, 1980.

    Article  PubMed  CAS  Google Scholar 

  115. Joyce, EM and Iversen, SD: The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci. Lett. 14: 207–212, 1979.

    Article  PubMed  CAS  Google Scholar 

  116. Joyce, EM and Koob, GF, Strecker, R, Iversen, SD and Bloom, FE: The behavioral effects of enkephalin analogues injected into the ventral tegmental area and globus pallidus. Brain Res. 221: 359–370, 1981.

    Article  PubMed  CAS  Google Scholar 

  117. Kelly, AE, Stinus, L and Iversen, SD: Interaction between D-Ala-Met-enkephalin, A-10 dopaminergic neurons and spontaneous behavior in the rat. Behav. Brain Res. 1: 3–24, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Pert, A., Clarke, P.B.S. (1987). Nicotinic Modulation of Dopaminergic Neurotransmission: Functional Implications. In: Martin, W.R., Van Loon, G.R., Iwamoto, E.T., Davis, L. (eds) Tobacco Smoking and Nicotine. Advances in Behavioral Biology, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1911-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1911-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9063-6

  • Online ISBN: 978-1-4613-1911-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics