Lattice Gauge Fields and Topology

  • Anthony Phillips
  • David Stone
Part of the NATO ASI Series book series (NSSB, volume 159)


Our purpose in this report is to give an informal introduction to our work on the topology of lattice gauge fields and the computation of topological charge [1] and to present some examples which have not been published, notably some naturally occurring examples of LGF’s on the complex projective space CP2.


Manifold Dinates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Phillips, D. Stone, Lattice gauge fields, principal bundles and the calculation of topological charge, Commun. Math. Phys. 103 (1986) 599–636MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    C.N. Yang, Magnetic monopoles, fiber bundles and gauge fields, Ann. N. Y. Acad. Sci, 294 (1977) 86–97ADSCrossRefGoogle Scholar
  3. [3]
    N. Steenrod, “Topology of Fibre Bundles”, Princeton Univ. Press 1951MATHGoogle Scholar
  4. [4]
    R. Bott,H.Shulman,J.Stasheff, On the de Rham theory of certain classifying spaces, Adv. in Math. 20 (1976) 43–56MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Lüscher, Topology of lattice gauge fields, Commun. Math. Phys. 85 (1982) 39–48ADSMATHCrossRefGoogle Scholar
  6. [6]
    P. Van Baal, Some results for SU(N) gauge-fields on the hypertorus, Commun. Math. Phys. 85 (1982) 529–547ADSMATHCrossRefGoogle Scholar
  7. [7]
    A. Phillips, Characteristic numbers of U1-valued lattice gauge fields, Ann. of Physics 161 (1985) 399–422ADSMATHCrossRefGoogle Scholar
  8. [8]
    P. Woit, Topological charge in lattice gauge theory, Phys. Rev. Lett. 51 (1983) 638–641ADSCrossRefGoogle Scholar
  9. [9]
    J. Milnor, “Characteristic Classes”, Annals of Math. Studies No. 76, Princeton Univ. Press 1974MATHGoogle Scholar
  10. [10]
    W. Kühnel, T.F. Banchoff, The 9-vertex complex projective plane, Math. Intelligencer 5 (1983) 11–22MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Anthony Phillips
    • 1
  • David Stone
    • 2
  1. 1.Mathematics Dept.SUNYStony BrookUSA
  2. 2.Mathematics Dept.Brooklyn CollegeBrooklynUSA

Personalised recommendations