Experimental Aspects of the Fractional Quantum Hall Effect

  • Gregory S. Boebinger

Abstract

The fractional quantum Hall effect, FQHE, is one of the most exciting phenomena to be discovered recently in solid state physics. The FQHE is observed in high-mobility (µ > 105cm2/Vs) two-dimensional systems at low temperatures (T < 2 K) and high magnetic fields (B > 5 T). The FQHE is phenomenologically similar to the integral quantum Hall effect, IQHE: Plateaus are observed in the Hall resistivity, pxy, concomitant with minima in the diagonal resistivity, pxx (see Figure 1.1). While the IQHE exists at magnetic fields corresponding to integral Landau-level filling, v, the FQHE is observed at fractional Landau-level filling v = p/q where q is always odd (v = nh/eB, n = area density, and eB/h = Landau-level degeneracy). In the T → 0 limit, for both the IQHE and the FQHE, the plateaus in pxy are accurately quantized to h/ve2 and the minima in pxx reveal the presence of zero resistance states in the two-dimensional system. This low temperature behavior indicates the existence of energy gaps above the ground state of the system. While the IQHE can be phenomenologically understood through consideration of the single particle density of states, the FQHE requires a many-body approach to account for the phenomena.

Keywords

Permeability Titanium Crystallization Cage Epoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arovas, Daniel, J.R. Schrieffer, and Frank Wilczek, 1984, Fractional statistics and the quantum Hall effect, Phys. Rev. Lett. 53:722.ADSCrossRefGoogle Scholar
  2. Boebinger, G.S., A.M. Chang, H.L. Stormer, and D.C. Tsui, 1985a, Competition between neighboring minima in the fractional quantum Hall effect, Phys. Rev. B32:4268.ADSGoogle Scholar
  3. Boebinger, G.S., A.M. Chang, H.L. Stormer, and D.C. Tsui, 1985b, Magnetic field dependence of activation energies in the fractional quantum Hall effect, Phys. Rev. Lett. 55:1606.ADSCrossRefGoogle Scholar
  4. Boebinger, G.S., A.M. Chang, H.L. Stormer, D.C. Tsui, J.C.M. Hwang, G. Weimann, A. Cho, and C. Tu, 1986, Activation energies of fundamental and higher order states in the fractional quantum Hall effect, Surf. Sci. 170:129.ADSCrossRefGoogle Scholar
  5. Boebinger, G.S., D.C. Tsui, H.L. Stormer, G. Weimann, J.C.M. Hwang, A. Cho, and C. Tu, unpublished results on the v =1/5 minimum in pxx and studies on low-mobility samples.Google Scholar
  6. Chakraborty, T., 1985, Elementary excitations in the fractional quantum Hall effect, Phys. Rev. B31:4026.ADSGoogle Scholar
  7. Chakraborty, T., P. Pietiläinen, and F.C Zhang, 1986a, Elementary excitations in the fractional quantum Hall effect and the spin-reversed quasiparticles, Phys. Rev. Lett. 57:130.ADSCrossRefGoogle Scholar
  8. Chakraborty, T., 1986b, Spin-reversed quasiparticles in the fractional quantum Hall effect -many body approach, Phys. Rev. B34:2926.ADSGoogle Scholar
  9. Chang, A.M., M.A. Paalanen, D.C. Tsui, H.L. Stormer, and J.C.M. Hwang, 1983, Fractional quantum Hall effect at low temperatures. Phys. Rev. B28:6133.ADSGoogle Scholar
  10. Chang, A.M., P. Berglund, D.C. Tsui, H.L. Stormer, and J.C.M. Hwang, 1984a, Higher-order states in the multiple-series, fractional, quantum Hall effect, Phys. Rev. Lett. 53:997.ADSCrossRefGoogle Scholar
  11. Chang, A.M., M.A. Paalanen, H.L. Stormer, J.C.M. Hwang, and D.C. Tsui, 1984b, Fractional quantum Hall effect at low temperatures, Surf. Sci. 142:173.ADSCrossRefGoogle Scholar
  12. Clark, R.G., R.J. Nicholas, A. Usher, C.T. Foxon, and J.J. Harris, 1986, Odd and even fractionally quantized states in GaAs-GaAlAs hetero-junctions, Surf. Sci. 170:141.ADSCrossRefGoogle Scholar
  13. Ebert, G., K. von Klitzing, C. Probst, E. Schuberth, K. Ploog, and G. Weimann, 1983, Hopping conduction in the Landau level tails in GaAs-Alx Ga1-x As heterostructures at low temperatures, Solid State Commun. 45:625.ADSCrossRefGoogle Scholar
  14. Ebert, G., K. von Klitzing, J.C. Maan, G. Remenyi, C. Probst, G. Weimann, and W. Schlapp, 1984, Fractional quantum Hall effect at filling factors up to v =3, J. Phys. C17:L775.ADSGoogle Scholar
  15. Fano, G., F. Ortolani, and E. Colombo, 1986, Configuration-interaction calculations on the fractional quantum Hall effect, Phys. Rev. B34: 2670.ADSGoogle Scholar
  16. Girvin, S.M., A.H. MacDonald, and P.M. Platzman, 1985, Collective-excitation gap in the fractional quantum Hall effect, Phys. Rev. Lett. 54:581.ADSCrossRefGoogle Scholar
  17. Girvin, S.M., A.H. MacDonald, and P.M. Platzman, 1986, Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B33:2481.ADSGoogle Scholar
  18. Gold, A., 1986, Disorder effects on the transport properties in the fractional quantized Hall regime, Europhysics Lett. 1:241.ADSCrossRefGoogle Scholar
  19. Haldane, F.D.M., 1983, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51:605.MathSciNetADSCrossRefGoogle Scholar
  20. Haldane, F.D.M. and E.H. Rezayi, 1985, Finite-size studies of the incompressible state of the fractionally quantized Hall effect and its excitations, Phys. Rev. Lett. 54:237.ADSCrossRefGoogle Scholar
  21. Halperin, B.I., 1984, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett. 52:1583.ADSCrossRefGoogle Scholar
  22. Halperin, B.I., Z. Tesanovic, and F. Axel, 1986, Compatibility of crystalline order and the quantized Hall effect, Phys. Rev. Lett. 57:922(c).ADSCrossRefGoogle Scholar
  23. Hurkx, G.A.M. and W. van Haeringern, 1985, Self-consistent calculations on GaAs-Alx Ga1-x As heterojunctions, J. Phys. C18:5617.ADSGoogle Scholar
  24. Hwang, J.C.M., A.Kastalsky, H.L. Stormer, and V.G. Keramidas, 1984, Transport properties of selectively doped GaAs-(AlGa)As hetero-structures grown by molecular beam epitaxy, Appl. Phys. Lett. 44:802.ADSCrossRefGoogle Scholar
  25. Ihm, J. and J.C. Phillips, 1985, Activation energies and localization in the fractional quantized Hall effect, J. Phys. Soc. Jpn. 54:1506.ADSCrossRefGoogle Scholar
  26. Kittel, C., 1976, Introduction to Solid State Physics, 5th ed., John Wiley & Sons, Inc., New York.Google Scholar
  27. Kivelson, S., C. Kallin, D.P. Arovas, and J.R. Schrieffer, 1986, Cooperative-ring-exchange theory of the fractional quantized Hall effect, Phys. Rev. Lett. 56:873.ADSCrossRefGoogle Scholar
  28. Kukushkin, I.V. and V.B. Timofeev, 1986, Activation gaps sin the energy spectrum and influence of disorder on the fractional quantum Hall effect in silicon MOSFETS, Surf. Sci. 170:148.ADSCrossRefGoogle Scholar
  29. Lam, Pui K., and S.M. Girvin, 1984, Liquid-solid transition and the fractional quantum-Hall effect, Phys. Rev. B30:473.ADSGoogle Scholar
  30. Laughlin, R.B., 1981, Quantized Hall conductivity in two dimensions, Phys. Rev. B23:5632.ADSGoogle Scholar
  31. Laughlin, R.B., 1983, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50:1395.ADSCrossRefGoogle Scholar
  32. Laughlin, R.B. 1984a, The gauge argument for accurate quantization of the Hall conductance, in “Two-Dimensional Systems, Heterostructures, and Superlattices,” G. Bauer, F. Kuchar, H. Heinrich, eds., Springer-Verlag, Berlin, p.272.Google Scholar
  33. Laughlin, R.B., 1984b, Primitive and composite ground states in the fractional quantum Hall effect, Surf. Sci 142:163.ADSCrossRefGoogle Scholar
  34. Laughlin, R.B., 1984c, Excitons in the fractional quantum Hall effect, Physica (Amsterdam) 126B:254.ADSGoogle Scholar
  35. Laughlin, R.B., M.L. Cohen, J.M. Kosterlitz, H. Levine, S.B. Libby, and A.M.M. Pruisken, 1985, Scaling of conductivities in the fractional quantum Hall effect, Phys. Rev. B32:1311.ADSGoogle Scholar
  36. Laughlin, R.B., 1986, Destruction of the fractional quantum Hall effect by disorder, Surf. Sci. 170:167.ADSCrossRefGoogle Scholar
  37. Levesque, D., J.J. Weis, and A.H. MacDonald, 1984, Crystallization of the incompressible quantum fluid state of a two-dimensional electron gas in a strong magnetic field, Phys. Rev. B30:1056.ADSGoogle Scholar
  38. MacDonald, A.H., K.L. Liu, S.M. Girvin, and P.M. Platzman, 1986, Disorder and the fractional quantum Hall effect: activation energies and the collapse of the gap, Phys. Rev. B33:4014.ADSGoogle Scholar
  39. Mendez, E.E., L.L. Chang, M. Heiblum, L. Esaki, M. Naughton, K. Martin, and J. Brooks, 1984, Fractionally quantized Hall effect in two-dimensional systems of extreme electron concentration, Phys. Rev. B30:7310.ADSGoogle Scholar
  40. Morf, R., and B.I. Halperin, 1986, Monte-Carlo evaluation of trial wave functions for the fractional quantized Hall effect: disk geometry, Phys. Rev. B33:2221.ADSGoogle Scholar
  41. Mott, N.F., and E.A. Davis, 1979, “Electronic Properties in Non-Crystalline Materials,” 2nd ed., Clarendon, Oxford.Google Scholar
  42. Ono, Y., 1982, Localization of electrons under strong magnetic fields in a two-dimensional system, J. Phys. Soc. Jpn. 51:237.ADSCrossRefGoogle Scholar
  43. Paalanen, M.A., D.C. Tsui, and A.C. Gossard, 1982, Quantized Hall effect at low temperatures, Phys. Rev. B25:5566.ADSGoogle Scholar
  44. Paalanen, M.A., D.C. Tsui, A.C. Gossard, and J.C.M. Hwang, 1984, Disorder and the fractional quantum Hall effect, Solid State Commun. 50:841.ADSCrossRefGoogle Scholar
  45. Platzman, P.M., S.M. Girvin, and A.H. MacDonald, 1985, Conductivity in the fractionally quantized Hall effect, Phys. Rev. B32.-8458.ADSGoogle Scholar
  46. Rezayi, E.H., and F.D.M. Haldane, 1985, Incompressible states of the fractionally quantized Hall effect in the presence of impurities: a finite-size study, Phys. Rev. B32:6924.ADSGoogle Scholar
  47. Stern, F., and S. Das Sarma, 1984, Electron energy levels in GaAs-Ga1-x AlxAs heterojunctions, Phys. Rev. B30:840.ADSGoogle Scholar
  48. Stormer, H.L., A.C. Gossard, and W. Wiegmann, 1981, Backside-gated modulation-doped GaAs-(AlGa)As heterojunction interface, Appl. Phys.Lett. 39:493.ADSCrossRefGoogle Scholar
  49. Stormer, H.L., A. Chang, D.C. Tsui, J.C.M. Hwang, A.C. Gossard, and W. Wiegmann, 1983a, Fractional quantization of the Hall effect, Phys.Rev. Lett. 50:1953.ADSCrossRefGoogle Scholar
  50. Stormer, H.L., 1983b, Electron mobilities in modulation-doped GaAs-(AlGa) As heterostructures, Surf. Sci. 132:519.ADSCrossRefGoogle Scholar
  51. Tsui, D.C., A.C Gossard, B.F. Field, M.E. Cage, and R.F. Dziuba, 1982a, Determination of the fine-structure constant using GaAs-AlxGa1-xAs heterostructures, Phys. Rev. Lett. 48:3.ADSCrossRefGoogle Scholar
  52. Tsui, D.C., H.L. Stormer, and A.C. Gossard, 1982b, Two-dimensional magne-totransport in the extreme quantum limit, Phys. Rev. Lett. 48:1559.ADSCrossRefGoogle Scholar
  53. Tsui, D.C., H.L. Stormer, and A.C. Gossard, 1982c, Zero-resistance state of two-dimensional electrons in a quantizing magnetic field, Phys.Rev. B25.-1405.ADSGoogle Scholar
  54. Tsui, D.C., H.L. Stormer, J.C.M. Hwang, J.S. Brooks, and M.J. Naughton, 1983, Observation of a fractional quantum number, Phys. Rev. B28:2274.ADSGoogle Scholar
  55. von Klitzing, K, G. Dorda, and M. Pepper, 1980, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45:494.ADSCrossRefGoogle Scholar
  56. Wakabayashi, J., S. Kawaji, J. Yoshino, and H. Sakaki, 1986, Activation energies of the fractional quantum Hall effect in GaAs-AlGaAs heterostructures, J. Phys. Soc. Jpn. 55:1319.ADSCrossRefGoogle Scholar
  57. Yoshioka, D., B.I. Haperin, and P.A. Lee, 1983, Ground state of two-dimensional electrons in strong magnetic fields and 1/3 quantized Hall effect, Phys. Rev. Lett. 50:1219.ADSCrossRefGoogle Scholar
  58. Yoshioka, D., 1984, Effect of the Landau level mixing on the ground state of two-dimensional electrons, J. Phys. Soc. Jpn. 53:3740.ADSCrossRefGoogle Scholar
  59. Yoshioka, D., 1986, Excitation energies of the fractional quantum Hall effect, J. Phys. Soc. Jpn. 55;885.ADSCrossRefGoogle Scholar
  60. Zhang, F.C., V.Z. Vulovic, Y. Guo, and S. Das Sarma, 1985, Effect of charged impurity on the fractional quantum Hall effect: exact numerical treatment of finite system, Phys. Rev. B32.-6920.ADSGoogle Scholar
  61. Zhang, F.C. and S. Das Sarma, 1986, Excitation gap in the fractional quantum Hall effect: finite layer thickness corrections, Phys. Rev. B33:2903.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Gregory S. Boebinger
    • 1
  1. 1.Dept. of Physics and Francis Bitter National Magnet Lab.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations