Skip to main content
  • 124 Accesses

Abstract

The research described herein is directed at establishing an enhanced understanding of the basic processing behavior of uniform fine ceramic powders. Monosized colloidal silica has been used as a model system to determine the effects of the processing conditions on consolidation behavior (particle packing) during pressure filtration from aqueous suspensions. In this study, 0.3 and 0.6 μm SiO2 powders were pressure filtered (20–40 psi) to determine the effects of the solids loading and state of dispersion on the green density, cake permeability, specific cake resistance, microstructural uniformity, and pore size distribution of the SiO2 green bodies. Pressure filtration from aqueous dispersions with increased solids loading resulted in lowered green densities, decreased specific cake resistance (to fluid flow), αc, increased permeability, Kc, and increased median pore size. Similar effects were observed when green bodies were formed from low pH (agglomerated) as opposed to high pH (dispersed) aqueous suspensions. Pressure filtration of monosized colloidal silica produced green bodies with uniform (non-ordered) particle arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Wachtman, “Ceramic Fever-Advanced Ceramics in Japan”, Ceramic Industry, 121, 6 (1983).

    Google Scholar 

  2. H. K. Bowen, “Basic Research Needs on High Temperature Ceramics for Energy Applications,” Mater. Sci. and Eng., 44, 1–56 (1980).

    Article  CAS  Google Scholar 

  3. E. A. Barringer and H. K. Bowen, “Formation, Packing, and Sintering of Monodisperse TiO2 Powders,” J. Am. Ceram. Soc., 65, C-199 (1982).

    Article  Google Scholar 

  4. E. A. Barringer, “Monodisperse Colloidal TiO2,” Ph,D. Thesis, M.I.T., (Sept. 1983).

    Google Scholar 

  5. J. S. Haggerty, “Growth of Precisely Controlled Powders from Laser Heated Gasses,” in Ultragtructure Processing of Ceramics, Glasses, and Composites, pp. 353–366. Edited by L. L. Hench, D. R, Ulrich, J. Wiley and Sons, N.Y. 1984.

    Google Scholar 

  6. S. C. Danforth and J. S. Haggerty, “Mechanical Properties of Sintered and Nitrided Laser Synthesized Silicon Powder,” J. Am. Ceram. Soc., Communications, 66, 4, C-58–59, April (1983).

    Article  Google Scholar 

  7. M. F. Yan, et al., “Effect of Impurities and Pores on Grain Boundary Mobility,” Bull. Am. Ceram. Soc., 56, 291 (1977).

    Google Scholar 

  8. W. H. Rhodes, “Agglomerates and Particle Size Effects on Sintering Yttria Stabilized Zirconia.” J. Am. Ceram. Soc., 64, 19 (1981).

    Article  CAS  Google Scholar 

  9. H. K. Bowen, R. L. Pober, E. A. Barringer, M. V. Parrish, and N. Levoy, “Dispersion and Packing of Narrow Size Distribution Powders,” Report of the Committee on the Workshop on the Reliability of Multi-layer Ceramic Capacitors, Publication NMAB-400, National Academy Press, Washington, D.C. (1983).

    Google Scholar 

  10. I. A. Aksay and C. H. Schilling, “Mechanics of Colloidal Filtration,” Advances in Ceramics, Forming of Ceramics, V. 9, Ed. J. A. Mangels, pp. 85–93 (1984).

    Google Scholar 

  11. I. A. Aksay, “Microstructure Control Through Colloidal Filtration,” Advances in Ceramic, Forming of Ceramics, V.9, Ed. J. A. Mangels, pp. 94–104 (1984).

    Google Scholar 

  12. M. Velazquez, S. C. Danforth, “Casting of Monodisperse Colloidal Silica,” Advances in Ceramics, Forming of Ceramics, V.9, Ed. J. A. Mangels, pp. 105–114 (1984).

    Google Scholar 

  13. M. D. Sacks, T. Y. Tseng, “Preparation of SiO2 from Model Powder Compacts: I, Formation and Characterization of Powders, Suspensions, and Green Compacts,” J. Am. Ceram. Soc., 67, 8, 526–532 (1984).

    Article  CAS  Google Scholar 

  14. M. D. Sacks, T. Y. Tseng, “Preparation of SiO2 Glass from Model Powder Compacts: II, Sintering,” J. Am. Ceram. Soc., 67, 8, 532–537 (1984).

    Article  CAS  Google Scholar 

  15. F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67, 2, 83–89 (1984).

    Article  CAS  Google Scholar 

  16. M. T. Strauss, T. A. Ring, H. K. Bowen, “Interaction Energies and Pressures in Concentrated, Acqueous Suspensions of Polydisperse Ceramic Powders,” Am. Ceram. Soc., Fall Mtg., 101-B-84P,San Francisco, CA, Oct. (1984).

    Google Scholar 

  17. W. B. Russel, private communication (1985).

    Google Scholar 

  18. S. C. Danforth, Synthesis and Processing of Uniform Fine Ceramic Powders, Proceedings of the Lecture Meeting on Advanced Ceramics, Tokyo Inst, of Techn., Tokyo, Japan, Oct. (1984), Ed. S. Somiya et al., Terra Scientific Publishing Co., Tokyo, Japan (1986).

    Google Scholar 

  19. G. J. Garvey, J. M. Lihrmann, J. S. Haggerty, “Dispersion, Shaping, and Reaction-Bonding of Laser Synthesized Silicon Powders,” Am. Cer. Soc., Fall Mtg., 103-B-84P, San Fransisco, CA, October (1984).

    Google Scholar 

  20. T. C. Huynh, “Synthesis of Monosized SiO2 Powder,” Ph.D. Thesis, MIT, June (1985).

    Google Scholar 

  21. H. K. Bowen, private communication (1982).

    Google Scholar 

  22. S. I. Kim, I. A. Aksay, “Pressure Filtration of Colloidal Systems,” Am. Ceram. Soc., Fall Mtg., 102-B-84P, San Fransisco, CA, October, (1984).

    Google Scholar 

  23. C. Han, I. A. Aksay, “Uniform Densification of Bimodal Particle Systems,” Am. Ceram. Soc., Fall Mtg., 11-B-84P, San Francisco, CA, October (1984).

    Google Scholar 

  24. E. A. Barringer, N. Jubb, B. Fegley, R. L.+ Pober, and H. K. Bowen, “Processing Monosized Powders,” in Ultrastructure Processing of Ceramics, Glasses, and Composites, pp. 315–333. Ed. L. L. Hench, D. R. Ulrich, J. Wiley and Sons, N.Y. (1984).

    Google Scholar 

  25. I. A. Aksay and C. H. Schilling, “Colloidal Filtration Route to Uniform Microstructures,” Ultrastructure Processing of_ Ceramics, Glasses, and Composites, pp. 439–447. Ed. L. L. Hench, D. R. Ulrich, J. Wiley and Sons, N.Y. (1984).

    Google Scholar 

  26. F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 ,2, 83–89 (1984).

    Article  CAS  Google Scholar 

  27. S. C. Danforth, unpublished work (1982).

    Google Scholar 

  28. F. F. Lange, B. J. Kellett, “Grain Growth Driven by External Surface Curvature,” Am. Ceram, Soc., Fall Mtg., 37-B-84P, San Fransisco, CA, Oct. (1984).

    Google Scholar 

  29. E. Matijevic, “Colloidal Stability and Complex Chemistry,” J. Colloid Interface Sci., 43, 217 (1973).

    Article  CAS  Google Scholar 

  30. J. Th. G. Overbeek, “Recent Developments in the Understanding of Colloidal Stability,” J. Colloid Interface Sci., 58, 357 (1977).

    Article  Google Scholar 

  31. D. J. Shaw, Introduction to Colloid and Surface Chemistry, Third Ed., Butterworths and Co., London, England (1980).

    Google Scholar 

  32. R. H. Ottewill, “Stability and Instability in Disperse Systems,” J. Colloid Interface Sci., 58, 408 (1977).

    Article  Google Scholar 

  33. P. J. Anderson, “Characteristics of Zeta Potential Against Concentration Relations,” Trans. Faraday Soc., 54, 562 (1958).

    Article  CAS  Google Scholar 

  34. G. W. Phelps, S. G. Maguire, W. J. Kelley, R. K. Wood, Rheology and Rheometry of Clay-Water Systems, Cyprus Industrial Minerals Co. (1982).

    Google Scholar 

  35. J. E. Funk, “Slip Casting and Casters,” Advances in Ceramics, Forming of Ceramics, V. 9, Ed. J. A. Mangels, pp. 76–84 (1984).

    Google Scholar 

  36. D. S. Adcock and I. C. McDowall, “Mechanism of Filter Pressing and Slip Casting.” J. Am. Ceram. Soc., 40, 355 (1957).

    Article  Google Scholar 

  37. E. S. Tormey, R. L. Pober, H. K. Bowen, P. D. Calvert, “Tape Casting Future Developments,” Advances in Ceramics, Forming of Ceramics, V. 9, Ed. J. A. Mangels, pp. 140–149 (1984).

    Google Scholar 

  38. R. J. MacKinnon, J. B. Blum, “Particle Size Distribution Effects on Tape Casting Barium Titanate,”

    Google Scholar 

  39. R. E. Mistier, D. J. Shanefield, R. B. Runk, “Tape Casting of Ceramics,” Ceramics Processing Before Firing, Ed. by G. Y. Onoda, Jr., and L. L. Hench, John Wiley and Sons, N.Y., N.Y., pp. 411–448 (1978).

    Google Scholar 

  40. J. A. Mangels, W. Trela, “Ceramic Components by Injection Molding,” Advances in Ceramics, Forming of Ceramics, V. 9, Ed. J. A. Mangels, pp. 220–233 (1984).

    Google Scholar 

  41. C. L. Quackenbusch, K. French, J. T. Neil, “Fabrication of Sinterable Silicon Nitride by Injection Molding,” Ceram. Eng. Sci. Proc., 3, 1–2, 20–34 (1982).

    Article  Google Scholar 

  42. K. Bridger, M. Tadros, W. Leu, F. Tiller, “Filtration Behavior of Suspensions of Uniform Polystyrene Particles in Aqueous Media,” Separation Sci. Technol., 18, 12–13, 1417–1438 (1983).

    Article  CAS  Google Scholar 

  43. R. Allman III, “Polycrystalline Colloids and Their Implications on Microstructure Evolution,” M.S. Thesis, Univ. of California, Los Angeles, CA (1983).

    Google Scholar 

  44. W. B, Russel, private communication (1984).

    Google Scholar 

  45. D. S, Adcock and I. C. McDowall, “Mechanism of Filter Pressing and Slip Casting,” J. Am. Ceram. Soc., 40, 355 (1957).

    Article  Google Scholar 

  46. A. E. Scheidegger, The Physics of Flow Through Porous Media, 3rd Ed., Univ. of Toronto Press, Toronto (1974).

    Google Scholar 

  47. W. Stober, A. Fink, and E. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” J. Colloid Interface Sci., 26 62 (1968).

    Article  Google Scholar 

  48. K. Bridger, private communication (1984).

    Google Scholar 

  49. G. W. Phelps, J. S. Dennis, “Particle Size of Feldspar and Flint as a Factor in Slip Casting,” J. Am. Ceram. Soc., 44. 4, 149–156 (1961).

    Article  CAS  Google Scholar 

  50. O. J. Whittemore, “Mercury Porosimetry of Ceramics,” Powder Technology, 29, 167–175 (1981).

    Article  CAS  Google Scholar 

  51. R. E. Collins, Flow of Fluids Through Porous Media. Reinhold Publ. Co., N.Y. (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Velazquez, M., Danforth, S.C. (1987). Pressure Filtration of Monosized Colloidal Silica. In: Mittal, K.L. (eds) Surface and Colloid Science in Computer Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1905-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1905-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9060-5

  • Online ISBN: 978-1-4613-1905-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics