Skip to main content

A Thermodynamic Model for Predicting Formation of Chemical Bonds between Metals and Cured Polyimides During Metallization

  • Chapter

Abstract

Adhesion between metals and polymers has been a subject of practical concern in the microelectronic packaging technology. Formation of chemical bonds promises the type of adhesion favored by the new processing techniques being developed in the industry. In an earlier paper, a thermodynamic model was proposed where an effective partial molar energy was defined for the pendent oxygen in the cured polyimide (PI) and its limiting values determined experimentally by in-situ XPS monitoring of interfacial reaction during metallization. Used to predict whether a metal will form chemical bonds with the oxygen in PI, the model was found to be valid for several metals. In this paper a quasichemical approach is used to examine the validity of the assumptions on which the model is based. It is shown that until a detailed quantum mechanical treatment is made, some of these assumptions should be regarded as a mixture of truth and expediency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. J. Chou, D. W. Dong, J. Kim and A. C. Liu, Extended Abstracts, 83–1, Abstr. No. 247, Electrochem. Soc. Meeting, May 8–13, 1983, San Francisco, California; see also, J. Electrochem. Soc., 131, 2337 (1984)

    Google Scholar 

  2. N. J. Chou and C. H. Tang, J. Vac. Sci. Techn. A2, 751 (1984)

    Google Scholar 

  3. P. N. Sanda, J. W. Bartha, B.D. Silverman, P. S. Ho and A. R. Rossi, Mat. Res. Soc. Sym. Proc. 40, 283 (1985)

    Article  CAS  Google Scholar 

  4. J. L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, and R.A. Pollak, NSLS 1985 Annual Report, Brookhaven National Laboratory, BNL 51947, 98 (1985); and

    Google Scholar 

  5. J. L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, and R.A. Pollak, J. Vac. Sci. Technol. A4 1046 (1986)

    Google Scholar 

  6. B. D. Silverman, P. N. Sanda, P. S. Ho and A. R. Rossi, J. Polymer Sci., Polym. Chem. Ed. 23, 2857 (1985)

    Article  CAS  Google Scholar 

  7. J. W. Bartha, P. O. Hahn, F. LeGoues and P. S. Ho, paper presented at American Vacuum Society 31st National Symposium, Reno, Nevada, Dec 4–7, 1984

    Google Scholar 

  8. O. Kubaschewski and E. LL. Evans, “Metallurgical Thermochemistry”, Wiley and Sons, Inc. New York, 1956

    Google Scholar 

  9. R. Ginsburg and J. R Susko, private communication, 1983

    Google Scholar 

  10. P. J. Flory, “Statistical Mechanics of Chain Molecules”, Wiley Interscience, New York, 1969

    Google Scholar 

  11. A. I. Kitaigorodsky, “Mixed Crystals”, Springer-Verlag, Heidelberg, 1984

    Google Scholar 

  12. R. A. Swalin, J. Phys. Chem. Solids, 18, 290, (1961)

    Article  CAS  Google Scholar 

  13. L. Pauling, “The Nature of Chemical Bonds”, Cornell Univ. Press, Ithaca, New York, 1960

    Google Scholar 

  14. L. Fieser and M. Fieser, “Organic Chemistry” Reinhold Publishing Corporation, New York, 1960

    Google Scholar 

  15. P. L. Buchwalter, A. I. Baise, in “Polyimides: Synthesis, Characterization and Applications”, K. L. Mittal, editor, Vol. 1, p.537, Plenum Press, New York, 1984

    Google Scholar 

  16. H. J. Leary, Jr. and D. S. Campbell, ACS Sym. Ser. 162, 147 (1981)

    Google Scholar 

  17. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Mullenberg, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979

    Google Scholar 

  18. F. S. Ohuchi and S. C. Freilich, J. Vac. Sci. Technol. A4, 1039 (1986)

    Google Scholar 

  19. N. D. Lang and A. R. Willams, Phys. Rev. Letters, 37, 212 (1976) and references cited therein

    Article  CAS  Google Scholar 

  20. See, e.g., S. Bagus and K. Hermann, Solid State Commun., 20, 5(1976)

    Article  Google Scholar 

  21. A. B. Fowler, private communication, 1984

    Google Scholar 

  22. R. S. Mulliken and W. B. Person, “Molecular Complexes”, Wiley-Interscience, New York, 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Chou, N.J., Tang, C.H. (1987). A Thermodynamic Model for Predicting Formation of Chemical Bonds between Metals and Cured Polyimides During Metallization. In: Mittal, K.L. (eds) Surface and Colloid Science in Computer Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1905-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1905-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9060-5

  • Online ISBN: 978-1-4613-1905-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics