Muramyl Dipeptides, Host Immunity and Enhancement

  • Monique Parant
  • Louis Chedid

Abstract

Immunopotentiating agents can be used either to enhance immunologically specific responses, and/or to activate mechanisms of nonspecific host resistance. Actually, immunopotentiating products may turn out to be of major importance in cases of problem infections, mainly in the immunocompromised host, or for the treatment of immunodeficiences concomitant to certain chronic infectious diseases and occurring under various conditions such as malnutrition and old age.

Keywords

Influenza Pseudomonas Malaria Indomethacin Candida 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Adam, Enhanced in vitro phagocytosis of different pathogens by human monocytes in the presence of antibiotics, in: “The Influence of Antibiotics on the Host-parasite Relationship,” H. U. Eickenberg, H. Hahn, and W. Opferkuch, eds., Springer-Verlag, Berlin (1982).Google Scholar
  2. 2.
    L. E. Adinolfi, P. F. Bonventre, M. Van der Pas, and D. A. Eppstein, Synergistic effect of glucantime and a liposome-encapsulated muramyl dipeptide analog in therapy of experimental visceral Leishmaniasis, Infect. Immun. 48:409 (1985).PubMedGoogle Scholar
  3. 3.
    E. H. Beachey, B. I. Eisenstein, and I. Ofek, Sublethal concentrations of antibiotics and bacterial adhesion, in: “Adhesion and Microorganisms Pathogenicity,” K. Elliott, M. O’Connor, and J. Whelan, eds., Ciba Foundation Symp. 80, Pitman Medical Ltd., London (1980).Google Scholar
  4. 4.
    N. E. Byars, Two adjuvant-active muramyl dipeptide analogs induce differential production of lymphocyte-activating factor and a factor causing distress in guinea pigs, Infect. Immun. 44:344 (1984).PubMedGoogle Scholar
  5. 5.
    L. Chedid, and F. Audibert, New approaches for control of infections using synthetic or semi-synthetic constructs containing MDP, Springer Semin. Immunopathol. (in press).Google Scholar
  6. 6.
    L. Chedid, M. Parant, F. Audibert, G. Riveau, F. Parant, E. Lederer,J. Choay, and P. Lefrancier, Biological activity of a new synthetic muramyl peptide adjuvant devoid of pyrogenieity, Infect. Immun. 35:417 (1982).PubMedGoogle Scholar
  7. 7.
    L. Chedid, M. Parant, F. Parant, F. Audibert, P. Lefrancier, J. Choay, and M. Sela, Enhancement of certain biological activities of muramyl dipeptide derivatives after conjugation to a multi-poly(DL-alanine)-poly(L-Lysine) carrier, Proc. Natl. Acad. Sci. USA 76:6557 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Chedid, M. Parant, F. Parant, P. Lefrancier, J. Choay, and E. Lederer, Enhancement of non-specific immunity to Klebsiella pneumoniae infection by a synthetic immunoadjuvant (N-acetylmuramyl-L-alanyl-D-isoglutamine) and several analogs, Proc. Natl. Acad. Sci. USA 74:2089 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Chedid, M. Parant, and G. Riveau, Immunopharmacological activities of MDP, in: “Immunopharmacology and the Regulation of Leukocyte Function,” D. R. Webb, ed., Marcel Dekker, New York (1982).Google Scholar
  10. 10.
    L. Chedid, Muramyl peptides as possible endogenous immunopharmacological mediators, Microbiol. Immun. 27:723 (1983).Google Scholar
  11. 11.
    C. Damais, G. Riveau, M. Parant, J. Gerota, and L. Chedid, Production of lymphocyte-activating factor in the absence of endogenous pyrogen by rabbit or human leukocytes stimulated by a muramyl dipeptide derivative, Int. J. Immunopharmaco1. 4:451 (1982).CrossRefGoogle Scholar
  12. 12.
    F. M. Dietrich, B. Lukas, and K. H. Schmidt-Ruppin, MTP-PE (synthetic muramyl peptide): prophylactic and therapeutic effects in experimental viral infections, 13th Intern. Cong. Chemotherapy, Vienna, (1983).Google Scholar
  13. 13.
    F. M. Dietrich, W. Sackmann, G. H. Mitchell, and A. Voller, Modulation of resistance to infections by synthetic low-molecular-weight compounds endowed with immunostimulatory properties: experimental results and potential role in human medicine, in: “Chemotherapy and Immunology in the Control of Malaria, Filariasis, and Leishmaniasis,” N. Anand, and A. B. Sen, eds., Tata McGraw-Hill Publ., New-Dehli (1983).Google Scholar
  14. 14.
    F. M. Dietrich, W. Sackmann, O. Zak, and P. Dukor, Synthetic muramyl dipeptide immunostimulants: protective effects and increased efficacy of antibiotics in experimental bacterial and fungal infections in mice, in: “Current Chemotherapy and Infectious Disease, vol. 2,” J. D. Nelson, and G. Grassi, eds., Amer. Soc. Microbiol, (1981).Google Scholar
  15. 15.
    I. J. Fidler, and A. J. Schroit, Synergism between lymphokines and muramyl dipeptide encapsulated in liposomes: In situ activation of macrophages and therapy of spontaneous cancer metastases, J. Immunol. 133:515 (1984).PubMedGoogle Scholar
  16. 16.
    I. J. Fidler, S. Sone, W. E. Fogler, D. Smith, D. G. Broun, L. Tarcsay, R. H. Gisler, and A. J. Schroit, Efficacy of liposomes containing a lipophilic muramyl dipeptide derivative for activating the tumoricidal properties of alveolar macrophages in vivo, J. Biol. Resp. Modif. 1:43 (1982).Google Scholar
  17. 17.
    E. B. Fraser-Smith, and T. R. Matthews, Protective effect of muramyl dipeptide analogs against infections of Pseudomonas aeruginosa or Candida albicans, Infect. Immun. 34:676 (1981).PubMedGoogle Scholar
  18. 18.
    E. B. Fraser-Smith, R. V. Waters, and T. R. Matthews, Correlation between in vivo anti-Pseudomonas and anti-Candida activities and clearance of carbon by the reticuloendothelial system for various muramyl dipeptide analogs, using normal and immunosuppressed mice, Infect. Immun. 35:105 (1982).PubMedGoogle Scholar
  19. 19.
    H. Friedman, and G. Warren, Increased phagocytosis of Escherichia coli pretreated with subinhibitory concentration of cyclacillin or ampicillin, Proc. Soc. Exp. Biol. Med. 169:301 (1982).PubMedGoogle Scholar
  20. 20.
    H. Friedman, and G. Warren, Muramyl dipeptide-induced enhancement of phagocytosis of antibiotic-pretreated Escherichia coli by macrophages, Proc. Soc. Exp. Biol. Med. 176:366 (1984).PubMedGoogle Scholar
  21. 21.
    R. B. Galland, L. S. Trachtenberg, N. Rynerson, and H. C. Polk, Nonspecific enhancement of resistance to local bacterial infection in starved mice, Arch. Surgery 117:161 (1982).Google Scholar
  22. 22.
    M. J. Kluger, Historical aspects of fever and its role in disease, in: “Thermoregulatory Mechanisms and Their Therapeutic Implications,” B. Cox, P. Lomax, A. S. Milton, and E. Schonbaum, eds., S. Karger, Basel (1980).Google Scholar
  23. 23.
    S. Kotani, H. Takeda, M. Tsujimoto, T. Ogawa, Y. Mori, T. Koga, H. Iribe, A. Tanaka, S. Nagao, J. R. McGhee, S. M. Michalek, S. Kawata, T. Shiba, and S. Kusumoto, Lipophilic muramyl peptides and synthetic lipid A analogs as immunomodulators, in: “Progress in Immunology V,” Y. Yamamura, and T. Tada, eds., Academic Press, Japan (1983).Google Scholar
  24. 24.
    S. Kotani, Y. Watanabe, T. Shimono, K. Harada, T. Shiba, S. Kusumoto, K. Yokogawa, and M. Taniguchi, Correlation between the immuno-adjuvant activities and pyrogenicities of synthetic N-acetylmuramyl peptides or -aminoacids, Biken J. 19:9 (1976).PubMedGoogle Scholar
  25. 25.
    C. Leclerc, E. Bourgeois, and L. Chedid, Demonstration of muramyl dipeptide (MDP)-induced T suppressor cells responsible for MDP immunosuppressive activity, Europ. J. Immunol. 12:249 (1982).CrossRefGoogle Scholar
  26. 26.
    C. Leclerc, and L. Chedid, Macrophage activation by synthetic muramyl peptides, in: “Lymphokines 7,” E. Pick, ed., Academic Press, New York (1982).Google Scholar
  27. 27.
    E. Lederer, Synthetic immunostimulants derived from the bacterial cell wall, J. Med. Chem. 23:819 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Lefrancier, and E. Lederer, Chemistry of synthetic immunomodulant muramyl peptides, Prog. Chem. Org. Nat. Prod. 40:1 (1981).Google Scholar
  29. 29.
    K. Matsumoto, H. Ogawa, T. Kusama, O. Nagase, N. Sawaki, M. Inage, S. Kusumoto, T. Shiba, and I. Azuma, Stimulation of nonspecific resistance to infection induced by 6–0-acylmuramyl dipeptide analogs in mice, Infect. Immun. 32:748 (1981).PubMedGoogle Scholar
  30. 30.
    Y. Osada, M. Mitsuyama, K. Matsumoto, T. Une, T. Otani, H. Ogawa, and K. Nomoto, Stimulation of resistance of immunocompromised mice by a muramyl dipeptide analog, Infect. Immun. 37:1285 (1982).PubMedGoogle Scholar
  31. 31.
    Y. Osada, M. Mitsuyama, T. Una, K. Matsumoto, T. Otani, M. Satoh, H. Ogawa, and K. Nomoto, Effect of L18-MDP(Ala), a synthetic deriva-tive of muramyl dipeptide, on nonspecific resistance of mice to microbial infections, Infect. Immun. 37:292 (1982).PubMedGoogle Scholar
  32. 32.
    T. Otani, K. Katami, T. Une, Y. Osada, and H. Ogawa, Restoration by MDP-Lys (L18) of resistance to Pseudomonas pneumoniae in immunosuppressed guinea-pigs, Microbiol. Immunol. 28:1077 (1984).PubMedGoogle Scholar
  33. 33.
    M. Parant, F. Audibert, L. Chedid, M. Level, P. Lefrancier, J. Choay,and E. Lederer, Immunostimulant activities of a lipophilic muramyl dipeptide derivative and of a desmuramyl peptidolipid analog, Infect. Immun. 27:826 (1980).PubMedGoogle Scholar
  34. 34.
    M. Parant, and L. Chedid, Stimulation of nonspecific resistance to infections by synthetic immunoregulatory agents, Infection 12:230 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Parant, N. K. Masihi, W. Lange, W. Brehmer, F. Parant, M. Jolivet, and L. Chedid, Enhancement of nonspecific resistance to bacterial and viral infections by MDP conjugated to tetanus toxoid or viral subunits, submitted for publication.Google Scholar
  36. 36.
    M. Parant, F. Parant, L. Chedid, A. Yapo, J-F. Petit, and E. Lederer, Fate of the synthetic immunoadjuvant, muramyl dipeptide ( C-labeled) in the mouse, Int. J. Immunopharmacol. 1:35 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Parant, Biological properties of a new synthetic adjuvant, muramyl dipeptide (MDP), Springer Semin. Immunopathol. 2:101 (1979).CrossRefGoogle Scholar
  38. 38.
    M. Parant, Bacterial immunoregulatory agents, in: “Regulation of the Immune Response,” P. L. Ogra, and D. M. Jacobs, eds., S. Karger AG, Basel (1983).Google Scholar
  39. 39.
    N. C. Phillips, M. L. Moras, L. Chedid, P. Lefrancier, and J. M. Bernard, Activation of alveolar macrophage tumoricidal activity and eradication of experimental metastases by freeze-dried liposomes containing a new lipophilic muramyl dipeptide derivative, Cancer Res. 45:128 (1985).PubMedGoogle Scholar
  40. 40.
    H. C. Polk, R. B. Galland, and J. R. Ausobsky, Nonspecific enhancement of resistance to bacterial infection. Evidence of an effect supplemental to antibiotics, Ann. Surgery. 196:436 (1982).CrossRefGoogle Scholar
  41. 41.
    H. Pruul, B. L. Wetherall, and P. J. McDonald, Enhanced susceptibility of Escherichia coli to intracellular killing by human polymorpho-nuclear leukocytes after in vitro incubation with chloramphenicol, Antimicrob. Agents Chemother. 19:945 (1981).PubMedGoogle Scholar
  42. 42.
    W. Sackmann, and F. M. Dietrich, Experimental murine candidiasis: non-specific resistance induced by synthetic compounds with immunostimulatory properties, in: “Current Chemotherapy and Immunotherapy,” P. Periti, and G. Grassi, eds., Amer. Soc. Micro-biol. (1981).Google Scholar
  43. 43.
    M. J. Staruch, and D. D. Wood, The adjuvanticity of Interleukin-1 in vivo, J. Immunol. 130:2191 (1983).PubMedGoogle Scholar
  44. 44.
    K. Vosbeck, Effects of low concentrations of antibiotics on Escherichia coli adhesion, in: “The Influence of Antibiotics on the Host-Parasite Relationship,” H. U. Eickenberg, H. Hahn, and W. Opferkuch, eds., Springer-Verlag, Berlin (1982).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Monique Parant
    • 1
  • Louis Chedid
    • 1
  1. 1.Institut PasteurParisFrance

Personalised recommendations