Skip to main content

Classical and Quantum Mechanical Aspects of Thermal Wave Physics

  • Conference paper
Review of Progress in Quantitative Nondestructive Evaluation

Part of the book series: Review of Progress in Quantitative Nondestructive Evaluation ((RPQN,volume 6 A))

  • 41 Accesses

Abstract

The ability of thermal waves to perform non-destructive depth-profiling studies in materials with spatially variable thermal/thermodynamic properties has been exploited mostly qualitatively so far. The lack of appropriate general theoretical models in the literature has been largely responsible for the near absence of quantitative depth-profiling, especially in media with large thermal property variations within depths on the order of the thermal wavelength. As a result of mathematical difficulties, theoretical treatments have been essentially confined to discrete, multilayered solid structures with constant thermal and thermodynamic properties within each thin layer [1,2]. Furthermore, Afromowitz et al. [3] have applied discrete Laplace transformations to the heat conduction equation to treat the production of the photoacoustic signal in a solid with continuously variable optical absorption coefficient as a function of depth, however, the thermal parameters of the solid were assumed constant. Thomas et al. [4] calculated the Green’s function for the three-dimensional heat conduction equation describing thermal wave propagation in a thermally uniform solid with a subsurface discontinuity (“flaw”). More recently, Jaarinen and co-workers [5,6] used Finite Difference and Inverse methods for thermal wave depth-profiling of samples with spatially variant thermal properties from measurements of the surface temperature distribution. Aamodt and Murphy [7] very recently used vector/matrix methods to calculate thermal wave responses from discretely layered samples. These authors further considered the case of continuously varying thermal properties as the limit of infinitely thin layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Opsal and A. Rosencwaig, J. Appl. Phys. 53, 4240 (1982).

    Article  Google Scholar 

  2. S.D. Campbell, S.S. Yee, and M.A. Afromowitz, IEEE Trans. Biomed. Engn. BME-26, 220 (1979).

    Google Scholar 

  3. M.A. Afromowitz, S.P. Yeh, and S.S. Yee, J. Appl. Phys. 48, 209 (1977).

    Article  Google Scholar 

  4. R.L. Thomas, JJ. Pouch, Y.H. Wong, L.D. Favro, P.K. Kuo, and A. Rosencwaig, J. Appl. Phys. 51, 1152 (1980).

    Google Scholar 

  5. J. Jaarinen and M. Luukkala, J. Phys. (Paris) 44, C6 - 503 (1983).

    Google Scholar 

  6. H.J. Vidberg, J. Jaarinen and D.O. Riska, in “Inverse Determination of the Thermal Conductivity Profile in Steel from the Thermal Wave Surface Data” Res. Inst. Theor. Phys. Univ. Helsinki, Preprint # HU-TFT-85-38 (1985).

    Google Scholar 

  7. L.C. Aamodt and J.C. Murphy, J. Appl. Phys. (in press).

    Google Scholar 

  8. A. Mandelis, J. Math. Phys. 26, 2676 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Goldstein, in “Classical Mechanics”, Addison-Wesley, Reading, MA, (1965).

    Google Scholar 

  10. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).

    Article  Google Scholar 

  11. D. Marcuse, in “Light Transmission Optics”, Van Nostrand, New York (1982).

    Google Scholar 

  12. A. Burt, Proc. IEEE Ultrasonics Symp. 815 (1981).

    Google Scholar 

  13. A. Burt, J. Phys. (Paris) 44, C6 - 453 (1983).

    Article  Google Scholar 

  14. A. Burt, Proc. 4th Intern’l Topical Meeting on Photoacoustic, Thermal and Related Sciences Tech. Digest MA10 (1985).

    Google Scholar 

  15. C.A. Bennett and R.R. Patty, Appl. Opt. 21, 49 (1982).

    Article  Google Scholar 

  16. A. Mandelis, E. Siu, and S. Ho, Appl. Phys. A33 153 (1984).

    Article  Google Scholar 

  17. J. Opsal, A. Rosencwaig, and D.L. Willenborg, Appl. Opt. 22, 3169 (1983).

    Google Scholar 

  18. E.T. Whittaker and G.N. Watson, in “A Course of Modern Analysis”, Cambridge Univ. Press, Cambridge (1963).

    Google Scholar 

  19. P. Morse and H. Feshbach, in “Methods of Theoretical Physics”, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this paper

Cite this paper

Mandelis, A. (1987). Classical and Quantum Mechanical Aspects of Thermal Wave Physics. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation, vol 6 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1893-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1893-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9054-4

  • Online ISBN: 978-1-4613-1893-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics