Skip to main content

Quantum Effects in Strong Gravitational Fields

  • Chapter
Physics of Strong Fields
  • 362 Accesses

Abstract

A consistent quantum theory of gravitation remains an elusive goal, and one of the great outstanding challenges to fundamental theoretical physics. The most promising current set of ideas stems from the concepts of supersymmetry and supergravity, and goes under the name of superstring theory. This theory seeks to provide a unification of all the forces and particles of physics, and would thus provide a quantum description of gravitation as part of the package.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review see M. Green, Nature 314: 409 (1985).

    Article  Google Scholar 

  2. N.D. Birrell and P.C.W. Davies, “Quantum Fields in Curved Space”, Cambridge University Press, Cambridge (1982).

    Book  MATH  Google Scholar 

  3. M.J. Duff, Inconsistency of quantum field theory in curved spacetime, in: “Quantum Gravity 2: A Second Oxford Symposium”, C.J. Isham, R. Penrose, and D.W. Sciama, eds., Clarendon Press, Oxford (1981).

    Google Scholar 

  4. For a heuristic introduction see J. Rafelski and B. Muller, “The Structured Vacuum: Thinking About Nothing”, Verlag Harri Deutsch, Frankfurt am Main (1985).

    Google Scholar 

  5. S.W. Hawking, Commun. Math. Phys. 43: 199 (1975).

    MathSciNet  Google Scholar 

  6. N.N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34: 58 (1958).

    Google Scholar 

  7. W.G. Unruh, Phys. Rev. D 14: 870 (1976).

    ADS  Google Scholar 

  8. B.S. DeWitt, Quantum Gravity: the new synthesis, in: “General Relativity: an Einstein Centenary Survey”, S.W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge (1979).

    Google Scholar 

  9. See, for example, K.J. Hinton, PhD thesis, University of Newcastle upon Tyne (1985).

    Google Scholar 

  10. G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15: 2738 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  11. See, for example, “The Very Early Universe”, G.W. Gibbons, S.W. Hawking and S.T.C. Siklos, Cambridge University Press, Cambridge (1983) and A.D. Linde, Rep. Prog. Phys. 47: 925 (1984).

    Google Scholar 

  12. P.C.W. Davies, Phys. Rev. D. 30: 737 (1984).

    MathSciNet  ADS  Google Scholar 

  13. P.C.W. Davies, J. Phys. A: Gen. Phys. 8: 365 (1975).

    Google Scholar 

  14. J.S. Bell, R.J. Hughes and J.M. Leinaas, Z. Phys. C 28: 75 (1985).

    Article  ADS  Google Scholar 

  15. L. Parker, Phys. Rev. 183: 1057 (1969).

    Article  ADS  MATH  Google Scholar 

  16. Ya. B. Zeldovich and I.D. Novikov, “Relativistic Astrophysics Volume 2: The Structure and Evolution of the Universe”, University of Chicago Press, Chicago (1983), page 592.

    Google Scholar 

  17. B.S. DeWitt, The quantum aether, section 14.2 in reference 8.

    Google Scholar 

  18. C. Manogue, see article in this volume.

    Google Scholar 

  19. H.B.G. Casimir, Proc. Kon. Ned. Akad. Wet. 51: 793 (1948).

    MATH  Google Scholar 

  20. P.C.W. Davies and S.A. Fulling, Proc. Roy. Soc. London A 348: 393 (1976); 356: 337 (1977).

    Google Scholar 

  21. Ya. B. Zeldovich, Pis’ma Zh. Eksp. Teor. Fiz. 12: 443 (1970); Ya. B. Zeldovich and A.A. Starobinski, Pis’ma Zh. Eksp. Teor. Fiz. 26: 373 (1977).

    Google Scholar 

  22. See, for example, C.W. Misner, K.S. Thorne and J.A. Wheeler, “Gravitation”, Freeman, San Francisco (1973), section 40. 7.

    Google Scholar 

  23. C. Bernard and A. Duncan,Ann. Phys. (NY) 107: 201 (1977).

    Article  ADS  MATH  Google Scholar 

  24. C.W. Misner, K.S. Thorne and J.A. Wheeler, “Gravitation”, Freeman, San Francisco (1973) section

    Google Scholar 

  25. Ya. B. Zeldovich. JETP Letts. 14: 180 (1971).

    ADS  Google Scholar 

  26. W.G. Unruh, Phys. Rev. D 10: 3194 (1974).

    ADS  Google Scholar 

  27. A.A. Starobinski, Sov. Phys. JETP 37: 28 (1973).

    ADS  Google Scholar 

  28. See reference 5 and section 8.1 of reference 2.

    Google Scholar 

  29. M.J. Rees, Nature 266: 333 (1977).

    Article  ADS  Google Scholar 

  30. E. Fishback, D. Sudarsky, A. Szafer, C. Talmadge, Phys. Rev. Letts. 56: 3 (1986).

    Article  ADS  Google Scholar 

  31. P.C.W. Davies, S.A. Fulling and W.G. Unruh, Phys. Rev. D 13: 2720 (1976).

    Article  ADS  Google Scholar 

  32. P.C.W. Davies and S.A. Fulling, Proc. Roy. Soc. London A 356: 237 (1977).

    Article  ADS  Google Scholar 

  33. D.J. Toms, The importance of quantum effects in Kaluza-Klein theory, Can. J. Phys. 64: to appear (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Davies, P.C.W. (1987). Quantum Effects in Strong Gravitational Fields. In: Greiner, W. (eds) Physics of Strong Fields. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1889-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1889-7_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9052-0

  • Online ISBN: 978-1-4613-1889-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics