Skip to main content

Atomic Physics and the Dimensionality of Space

  • Chapter
Book cover Physics of Strong Fields

Abstract

The extremely high precision reached in QED experiments provides stringent bounds for any change in the standard framework of low energy physics (i.e. for energies close to the electron mass). In his contribution J. Reinhardt discusses e.g. such bounds for the coupling to a new light particle. In this lecture I want to discuss a rather different possibility, namely to derive from the Lamb-shift a bound for the deviation of the spatial dimension from the integer value three. Before doing so it is obviously necessary to discuss the concept of fractal dimensions and to explain their possible origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhanst C., Neuberger H., and Shapiro J., 1984: “Simulation of a Critical Ising Fractal” Phys. Rev. Lett. 53: 2277.

    Google Scholar 

  • Davydov A. S., 1965: “Quantum Mechanics,” Pergamon, Oxford.

    Google Scholar 

  • deMesa A. G., Guzman A., and Yndurain F. J., 1985: Determination of the Number of Non-Compact Dimensions,’ University of Madrid preprint 17/85.

    Google Scholar 

  • Gefen, Y., Meir, Y., Mandelbrot, B. B., and Aharony, A., 1983: ‘Geometric Implementation of Hypercubic Lattices with Noninteger Dimensionality by Use of Low Lacunarity Fractal Lattices’ Phys. Rev. Lett. 50: 145.

    Google Scholar 

  • Mandelbrot, B. B., 1977: ‘Fractals: Form Chance and Dimension’, Freeman, San Francisco, 1985: ‘The Fractal Geometry of Nature’, Freeman, San Francisco.

    Google Scholar 

  • Müller, B., and Schafer, A., 1986: ‘Improved Bounds on the Dimension of Space-Time’, Phys. Rev. Lett. 56: 1215.

    Google Scholar 

  • Schäfer, A., and Müller, B., 1986: ‘Bounds for the Fractal Dimension of Space’ to be published in J. Phys. A.

    Google Scholar 

  • Wetterich, C., 1985: ‘Kaluza-Klein Cosmology and the Inflationary Universe’, Nucl. Phys. B252: 309.

    Google Scholar 

  • Zeilinger, A., and Svozil, K., 1985: ‘Measuring the Dimension of Space-Time’, Phys. Rev. Lett. 54: 2553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Schäfer, A., Müller, B. (1987). Atomic Physics and the Dimensionality of Space. In: Greiner, W. (eds) Physics of Strong Fields. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1889-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1889-7_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9052-0

  • Online ISBN: 978-1-4613-1889-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics