Skip to main content

Cognitive Representation of Incomplete Knowledge

  • Chapter
Probability and Bayesian Statistics

Abstract

When asked for the meaning of subjective probability, Bayesian statisticians refer to concepts like confidence, feeling of uncertainty, incomplete knowledge, partial knowledge, or degrees of belief. Usually these concepts are taken as primitives, i.e. their meaning is not interpreted within a theory. Often subjective probabilities are “defined” by betting behavior. But such “definitions” are in the spirit of Bridgman’s operationalism and black box thinking. These paradigms were dominant around 1930 when the fundamentals of subjective probability theory were first developed by de Finetti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.R. (1983), The Architecture of Cognition, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, J.R: (1976), Language, Memory, and Thought, Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Anderson, R.J. &Bower, G.H. (1973), Human Associative Memory, Washington: Winston.

    Google Scholar 

  • Armstrong, S., Gleitman, L.G., & Gleitman, H. (1983), What some concepts might not be, Cognition, 13, 263–308.

    Article  Google Scholar 

  • Barr, A. & Feigenbaum, E. (Eds.) (1981), The Handbook of Artificial Intelligence, Vol. I. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Barsalou, L.W. & Bower, G.H. (1984), Discrimination nets as psychological models, Cognitive Science, 8, 1–26.

    Article  Google Scholar 

  • Bobrow, D.G. & Winograd, T. (1977), An overview of KRL, a kowledge representation language, Cognitive Science, 1, 3–46.

    Article  Google Scholar 

  • Bobrow, D.G. & Winograd, T. (1979), KRL, another perspective, Cognitive Science, 3, 29–42.

    Article  Google Scholar 

  • Braine, M.D. (1978), On the relation between the natural logic of reasoning and standard logic, Psychological Review, 85, 1–21.

    Article  Google Scholar 

  • Clark, K.L. &McCabe (1979), The control facilities of IC-PROLOG, in:D. Michie (Ed.), Expert Systems in the Micro Electronic Age, Edinburgh: Edinburgh University Press, pp.122–149.

    Google Scholar 

  • Collins, A.M. & Loftus, E.F. (1975), A spreading-activation theory of semantic processing, Psychological Review, 82, 407–428.

    Article  Google Scholar 

  • Collins, A., Warnock, E.H., Aiello, N., &Miller, M.L. (1975), Reasoning from incomplete knowledge, in: D.G.Bobrow &A.Collins (Eds.), Representation and Understanding, New York: Academic Press, pp.383–415.

    Google Scholar 

  • De Finetti, B. (1974), Theory of Probability, Vol. I. London: Wiley (Original work published 1970).

    MATH  Google Scholar 

  • Duda, R., Gaschnig, J., & Hart, P. (1979), Model design in the prospector consultant system for mineral exploration, in; D.Michie (Ed.), Expert Systems in the Micro Electonic Age, Edinburgh: Edinburgh University Press, pp.153–167.

    Google Scholar 

  • Evans, J.S.B.T. (1982), The Psychology of Deductive Reasoning, London: Routledge.

    Google Scholar 

  • Finke, R.A. (1986), Bildhaftes Vorstellen und visuelle Wahrnehmung, Spektrum der Wissenschaft,(Mai (5)), 78–86.

    Google Scholar 

  • Futo, I., Darvas, F., & Szeredi, P. (1978), The application of prolog to the development of QA and DBM systems, in: H.Gallaire &J.Minker (Eds.), Logic and Data Bases, New York: Plenum, pp.347–376.

    Google Scholar 

  • Genesereth, M.R. (1984), Partial programs, Stanford University, Computer Science Department Stanford, California 94305 Heuristic Programming Project Report HPP-84-1.

    Google Scholar 

  • Genesereth, M.R. &Nilsson, N.J. (1987), Logical Foundations of Artificial Intelligence, Preliminary Draft, Stanford University, Department of Computer Science.

    MATH  Google Scholar 

  • Gentner, D. &Collins, A. (1981), Studies of inference from lack of knowledge, Memory &Cognition, 9, 434–443,

    Article  Google Scholar 

  • Ginsberg, M.L. (1984), Analyzing incomplete information, Department of Computer Science, Stanford University Standford HPP 84–17.

    Google Scholar 

  • Glucksberg, S. &McCloskey, M. (1981), Decisions about ignorance: knowing that you don’t know, Journal of Experimental Psychology: Human Learning and Memory, 7, 311–324.

    Article  Google Scholar 

  • Glymour, C. (1985), Independence assumptions and Bayesian updating, Artificial Intelligence, 25, 95–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Graesser, A.C. &Clark, L.F. (1985), Structures and Procedures of Implicit Knowledge, Norwood, NJ: Ablex.

    Google Scholar 

  • Harvey, L.D., Jr. (1986), in:F.Klix &H.Hagendorf (Eds.), Human Memory and Cognitive Capabilities Amsterdam: North-Holland.

    Google Scholar 

  • Hogarth, R.G. (1975), Cognitive processes and the assessment of subjective probability distributions, Journal of the American Statistical Association, 70, 271–289.

    Article  MATH  Google Scholar 

  • Huber, O. (1983), The information presented and actually processed in a decision task, in: P.Humphreys, O.Svenson, &A.Vari (Eds.), Analysing and Aiding Decision Processes, Amsterdam: North-Holland, pp.441–454.

    Chapter  Google Scholar 

  • Humphreys, P. &Berkeley, D. (1983), Problem structuring calculi and levels of knowledge representation in decision making, in: R.W.Scholz (Ed.), Decision Making under Uncertainty, Amsterdam: North-Holland, 121–157.

    Google Scholar 

  • Kadesch, R.R. (1986), Subjective inference with multiple evidence, Artificial Intelligence, 28, 333–341.

    Article  Google Scholar 

  • Kahneman, D. &Tversky, A. (1972), Subjective probability: a judgment of representativeness, Cognitive Psychology, 3, 430–454.

    Article  Google Scholar 

  • Kahneman, D., Slovic, P., &Tversky, A. (Eds.) (1982), Judgment under uncertainty: Heuristics and biases, New York: Cambirdge Univ.Press.

    Google Scholar 

  • Kleiter, G.D. (1981), Bayes Statistik, Berlin: de Gruyter.

    MATH  Google Scholar 

  • Kosslyn, S.M. (1980), Image and Mind, Harvard: Harvard University Press.

    Google Scholar 

  • Kosslyn, S.M. (1984), Mental representation, in: J.R.Anderson &S.M.Kosslyn, Tutorials in Learning and Memory, San Francisco: Freeman, pp.91–117.

    Google Scholar 

  • Kuipers, B.J. (1975), A frame for frames: representing knowledge for recognition, in: D.G.Bobrow &A.Collins (Eds.), Representation and Understanding, New York: Academic Press, pp.151–184.

    Google Scholar 

  • Lehnert, W. &Wilks, Y. (1979), A critical perspective on KRL, Cognitive Science, 3, 1–28.

    Article  Google Scholar 

  • Lifschitz, V. (1985), Closed-world databases and circumscription, Artificial Intelligence, 27, 229–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Marr, D. (1982), Vision, San Francisco: Freeman.

    Google Scholar 

  • McCarthy, J. (1980), Circumscription-a form of non-monotonic reasoning, Artificial Intelligence, 13, 27–39.

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, J. (1980), Addendum: Circumscription and other non-monotonic formalisms. Artificial Intelligence, 13, 171–172.

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, J. (1986), Applications of circumscription to formalizing commonsense knowledge, Artificial Intelligence, 28, 89–116.

    Article  MathSciNet  Google Scholar 

  • McDermott, D. &Doyle, J. (1980), Non-monotonic logic I, Artificial Intelligence, 13, 41–72.

    Article  MathSciNet  MATH  Google Scholar 

  • McDermott, J. &Forgy, C. (1978), Production system conflict resolution strategies, in: P.A.Waterman &F.Hayes-Roth (Eds.), Pattern Directed Inference Systems, New York: Academic Press, pp.177–199.

    Google Scholar 

  • Medin, D.L. &Smith, E.E. (1984), Concepts and concept formation, Annual Review of Psychology, 35, 113–138.

    Article  Google Scholar 

  • Minsky, M. (1975), A framework for representing knowledge, in: P.H.Winston (Ed.), The Psychology of Computer Vision New York: McGraw-Hill.

    Google Scholar 

  • Moore, R.C. (1985), Semantical considerations on nonmonotonic logic, Artificial Intelligence, 25, 75–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Nilsson (1986), Probabilistic Logic, Artificial Intelligence, 28, 21–87.

    Article  MathSciNet  Google Scholar 

  • Norman, D.A. (1973), Memory, knowledge, and the answering of questions, in:R.L.Solso (Ed.), Contemporary Issues in Cognitive Psychology: The Loyola Symposium, Washington: Winston, pp.135–165.

    Google Scholar 

  • Osherson, D.N. &Smith, E.E. (1981), On the adequacy of prototype theory as a theory of concepts, Cognition, 9, 35–58.

    Article  Google Scholar 

  • Osherson, D.N. &Smith, E.E. (1982), Gradedness and conceptual combination, Cognition, 12, 299–318.

    Article  Google Scholar 

  • Pearl, J. (1986), On evidential reasoning in a hierarchy of hypotheses, Artificial Intelligence, 28, 9–15.

    Article  Google Scholar 

  • Pednault, E., Zucker, S., &Muresan, I. (1981), On the independence assumption underlying subjective Bayesian updating, Artificial Intelligence, 16, 213–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Quillian, M.R. (1968), Semantic memory, in: M.Minsky (Ed.), Semantic Information Processing Cambridge, MA: MIT Press.

    Google Scholar 

  • Reiter, R. (1978), On closed world data bases, in: H.Gallaire &J.Minker (Eds.), Logic and Data Bases, New York: Plenum Press, pp.55–76.

    Google Scholar 

  • Reiter, R. (1980), A logic for default reasoning, Artificial Intelligence, 13, 81–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, E.J. &Robinson, W.P. (1982), Knowing when you don’t know enough: children’s judgments about ambiguous information, Cognition, 12, 267–280.

    Article  Google Scholar 

  • Robinson, J.A. (1979), Fundamentals of machine-oriented deductive logic, in: D.Michie (Ed.), Introductory Readings in Expert Systems, New York: Gordon and Breach, pp.81–92.

    Google Scholar 

  • Robinson, J.A. (1979), The logical basis of programming by assertion and query, in:D.Michie (Ed.), Expert Systems in the Micro Electronic Age, Edinburgh: Edinburgh University Press, pp.105–121.

    Google Scholar 

  • Rosch, E. (1975), Cognitive representations of semantic categories, Journal of Experimental Psychology, General, 104, 192–233.

    Article  Google Scholar 

  • Rumelhart, D.E., Lindsay, P.H., &Norman, D.A. (1972), A process model for long-term memory, in:E.Tulving &W.Donaldson (Eds.), Organization of memory, New York: Academic Press, pp.198–246.

    Google Scholar 

  • Schank, R.C. (1982), Dynamic Memory, Cambridge: Cambridge University Press.

    Google Scholar 

  • Schank, R.C. (1982), Depth of knowledge, in:B.de Gelder, Knowledge and Representation, London: Routledge &Kegan Paul, pp.170–193.

    Google Scholar 

  • Schank, R.C. &Abelson, R.P. (1977), Scripts plans goals and understanding, Hillsdale, NJ: Erlbaum.

    MATH  Google Scholar 

  • Shepard, R.N. &Cooper, L.A. (1982), Mental Images and their transformations, Cambridge, MA: MIT Press.

    Google Scholar 

  • Shepard, R.N., Kilpatric, D.W., &Cunningham, J.P. (1975), The internal representation of numbers, Cognitive Psychology, 7, 82–138.

    Article  Google Scholar 

  • Shortliffe, E.H. (1976), Computer-Based Medical Consultations: MYCIN, New York: Elsevier.

    Google Scholar 

  • Slovic, P. &MacPhillamy, D. (1974), Dimensional commensurability and cue utilization in comparative judgment, Journal of Organizational Behavior and Human Performance, 11, 172–194.

    Article  Google Scholar 

  • Smith, E.E. &Medin, D.L. (1981), Categories and Concepts, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tversky, A. &Kahneman, D. (1983), Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment, Psychological Review, 90, 293–315.

    Article  Google Scholar 

  • Warren, D. (1979), PROLOG on the DECsystem-10, in: Michie (Ed.), Expert Systems in the Micro Electronic Age, Edinburgh: Edinburgh University Press, pp.112–121.

    Google Scholar 

  • Zadeh, L.A. (1982), A note on prototype theory and fuzzy sets, Cognition, 12, 291–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Kleiter, G.D. (1987). Cognitive Representation of Incomplete Knowledge. In: Viertl, R. (eds) Probability and Bayesian Statistics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1885-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1885-9_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9050-6

  • Online ISBN: 978-1-4613-1885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics