Advertisement

Coherent Distributions and Lindley’s Paradox

  • Guido Consonni
  • Piero Veronese

Summary

A Bayesian test of the simple null hypothesis H0:θ=θ0 versus the composite alternative H1:θ≠θ0 is performed using finitely additive prior distributions in order to investigate the so-called Lindley’s paradox. In particular two priors for θ under H1 are considered. The first represents a coherently non-informative distribution which is shown to correctly yield the “paradox” because of the overall induced distribution of θ. The second, through the use of adherent masses to θ0, does instead avoid Lindley’s paradox.

Keywords

Posterior Distribution Loss Function Prior Distribution Exponential Family Posterior Odds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo, J.M., 1980, A bayesian analysis of classical hypothesis testing, (with discussion), in:“Bayesian Statistics”, J.M. Bernardo, M.H. DeGroot, D.V. Lindley, A.F.M. Smith, eds., Univ. Press, Valencia.Google Scholar
  2. Consonni, G., and Veronese, P., 1986, Coherent distributions and Lindley’s paradox, Studi Statistici, n. 15, Istituto di Metodi Quantitativi, Università L. Bocconi, Milano.Google Scholar
  3. de Finetti, B., 1974,“Theory of Probability”, vol.1, J. Wiley, New York.MATHGoogle Scholar
  4. DeGroot, M.H., 1970, “Optimal statistical decisions”, McGraw-Hill, New York.MATHGoogle Scholar
  5. DeGroot, M.H., 1982, in discussion of G. Shafer, 1982.Google Scholar
  6. Dempster, A.P., 1980, in discussion of J.M. Bernardo, 1980.Google Scholar
  7. Hill, B.M., 1982, in discussion of G. Shafer, 1982.Google Scholar
  8. Jaynes, E.T., 1980, in discussion of J.M. Bernardo, 1980.Google Scholar
  9. Jeffreys, H., 1948, “Theory of probability”, second edition, Oxford Univ. Press, London.MATHGoogle Scholar
  10. Lindley, D.V., 1957, A statistical paradox, Biometrika, 44:187.MathSciNetMATHGoogle Scholar
  11. Lindley, D.V., 1977, A problem in forensic science, Biometrika, 64:207.MathSciNetCrossRefGoogle Scholar
  12. Lindley, D.V., 1982, in discussion of G. Shafer, 1982.Google Scholar
  13. Regazzini, E. and Cifarelli, D.M., 1986, Priors for exponential families which maximize the association between past and future observations, in this volume.Google Scholar
  14. Shafer, G., 1982, Lindley’s paradox,(with discussion), J.A.S.A., 77:325.MathSciNetMATHGoogle Scholar
  15. Veronese, P. and Consonni, G., 1986, Non informative priors for exponential families, Studi Statistici n. 14, Istituto di Metodi Quantitativi, Università L. Bocconi, Milano.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Guido Consonni
    • 1
  • Piero Veronese
    • 2
  1. 1.I.M.Q.L. Bocconi UniversityMilanoItaly
  2. 2.Dottorato Ricerca Trento University L. Bocconi UniversityMilanoItaly

Personalised recommendations