Energy Relaxation Phenomena in GaAs/GaAlAs Structures

  • Erich Gornik
Part of the NATO ASI Series book series (NSSB, volume 152)


The energy relaxation of 2D electrons in GaAs/GaAlAs structures has been investigated by analysing the electric field dependence of Shubnikov-de Haas oscillations, the far infrared emission and photoluminescence spectra. A quite general behavior of the electron heating ∆T = Te − TL as a function of the input power per electron Pe is found: \( T\alpha \sqrt {{{P_{e}}}} . \). The corresponding energy relaxation times in the range of nsec are independent of the electron temperature up to 30 K and inversly proportional to the electron density. At higher electron temperatures the energy relaxation is governed by optical phonon emission. However, the onset depends on electron concentration and is different for heterostructures and quantum wells. From intensity dependent cyclotron resonance transmission experiments Landau level lifetimes between 0.2 ns and 1 ns depending on the electron density are found in agreement with data from time-resolved photoluminescence.


Electron Temperature Optical Phonon Landau Level Energy Relaxation Electron Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hess, T. Englert, T. Neugebauer, G. Landwehr and G. Dorda, Phys. Rev. B 16, 3652 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    T. Englert and G. Landwehr, Phys. Rev. B 21, 702 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    H. Sakaki, K. Hirakawa, J. Yoshino, S.P. Svensson, Y. Sekiguchi, T. Hotta, S. Nishii and N. Miura, Surf. Sci. 142, 306 (1984) .ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Höpfel, E. Vass and E. Gornik, Solid State Commun. 49, 501 (1984) .CrossRefGoogle Scholar
  5. 5.
    R.A. Höpfel, E. Gornik and G. Weimann, Proc. of the 17th Int. Conf. on the Physics of Semiconductors, p. 579, Springer-Verlag (1984)Google Scholar
  6. 5a.
    R.A. Höpfel and G. Weimann, Appl. Phys. Lett. 46, 291 (1985).ADSCrossRefGoogle Scholar
  7. 6.
    E. Gornik and D.C. Tsui, Solid State Electron. 21, 139 (1978) .ADSCrossRefGoogle Scholar
  8. 7.
    R.A. Höpfel, E. Vass and E. Gornik, Phys. Rev. Lett. 49, 1667 (1982).ADSCrossRefGoogle Scholar
  9. 8.
    R.A. Höpfel and E. Gornik, Surface Science 142, 412 (1984).CrossRefGoogle Scholar
  10. 9.
    E. Vass, Solid State Commun. 55, 847 (1985).ADSCrossRefGoogle Scholar
  11. 10.
    E. Vass, Physica 134 B, 337 (1985).Google Scholar
  12. 11.
    P.J. Price, J. Appl. Phys. 53, 6863 (1982).ADSCrossRefGoogle Scholar
  13. 12.
    P.J. Price, Physica 134 B, 164 (1985).Google Scholar
  14. 13.
    J. Shah, A. Pinczuk, H.L. Störmer, A.C. Gossard and W. Wiegmann, Appl. Phys. Lett. 42, 55 (1983).ADSCrossRefGoogle Scholar
  15. 14.
    J. Shah, A. Pinczuk, A.C. Gossard and W. Wiegmann, Physica 134 B, 174 (1985) .Google Scholar
  16. 15.
    C.H. Yang and S.A. Lyon, Physica 134 B+C, 305 (1985).ADSGoogle Scholar
  17. 16.
    S. Das Sarma and B.A. Mason, Physica 134 B+C, 301 (1985).ADSGoogle Scholar
  18. 17.
    P. Kocevar, Physica Status Solidi (b) 84, 581 (1977).ADSCrossRefGoogle Scholar
  19. 18.
    P.J. Price, Phys. Rev. B 30, 2236 (1984).ADSCrossRefGoogle Scholar
  20. 19.
    M. Helm, E. Gornik, A. Black, G.R. Allan, C.R. Pidgeon and K. Mitchell, Physica 134 B, 323 (1985).Google Scholar
  21. 20.
    J.F. Ryan, Physica 134 B, 403 (1985)Google Scholar
  22. 20a.
    J.F. Ryan, R.A. Taylor, A.J. Turberfield and J.M. Worlock, Physica 134 B, 318 (1985).Google Scholar
  23. 21.
    R.W.J. Hollering, T.T.J.M. Berendshot, H.J.A. Blyssen, P. Wyder, M.R. Leys and J. Wolter, Physica 134 B, 422 (1985).Google Scholar
  24. 22.
    J.P. Maneval, A. Zilberstein and H.F. Budd, Phys. Rev. Lett. 23, 848 (1969).ADSCrossRefGoogle Scholar
  25. 23.
    G. Bauer and H. Kahlert, Phys. Rev. 5, 556 (1972)MathSciNetCrossRefGoogle Scholar
  26. 23a.
    H. Kahlert and G. Bauer, Phys. Rev. B 7, 2670 (1973).ADSCrossRefGoogle Scholar
  27. 24.
    T.J. Drummond et al., Electron. Lett. 17, 545 (1981).CrossRefGoogle Scholar
  28. 25.
    S. Hiyamizu, T. Fujii, T. Mimura, K. Nanbu, J. Saito and H. Has, Japan. J. Appl. Phys. 20, 455 (1981).ADSCrossRefGoogle Scholar
  29. 26.
    M. Inoue, M. Inayama, S. Hiyamizu and Y. Inuishi, Japan. J. Appl. Phys. 22, 357 (1983) Suppl. 22–1.ADSGoogle Scholar
  30. 27.
    D. Tsui, E. Gornik and R.A. Logan, Solid State Commun. 35, 875 (1980) .ADSCrossRefGoogle Scholar
  31. 28.
    R.A. Höpfel, G. Lindemann, E. Gornik, G. Stangl, A.C. Gossard and W. Wiegmann, Surf. Sci. 113, 118 (1982).CrossRefGoogle Scholar
  32. 29.
    Y. Sambe et al., Ext. Abstract 17th Conf. on Solid State Devices and Materials (Tokyo), 95 (1985).Google Scholar
  33. 30.
    K. Tsubaki, A. Sugimura and K. Kumabe, Appl. Phys. Lett. 46, 764 (1985) .ADSCrossRefGoogle Scholar
  34. 31.
    E. Gornik, T.Y. Chang, T.J. Bridges, V.T. Nguyen, I.D. Mc Gee and W. Müller, Phys. Rev. Lett. 40, 1151 (1978).ADSCrossRefGoogle Scholar
  35. 32.
    G.R. Allan, A. Black, C.R. Pidgeon, E. Gornik, W. Seiden-busch and P. Colter, Phys. Rev. B 31, 3560 (1985).ADSCrossRefGoogle Scholar
  36. 33.
    G.A. Rodriguez, R.M. Hart, A.J. Sievers, F. Keilmann, preprint.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Erich Gornik
    • 1
  1. 1.Institut für ExperimentalphysikUniv. InnsbruckInnsbruckAustria

Personalised recommendations