Introduction to Exclusive Processes in Perturbative QCD

Part of the NATO ASI Series book series (volume 150)


Every physics student by now knows that QCD [1] is the theory of strong interactions and that it is asymptotically free. It is also well known that the theory explains jets behaviour, massive lepton pair production in hadronic collisions, e e total cross section data, deep inelastic phenomena and many other processes, justifying the successes of the parton model and furthermore quantitatively explaining the differences between parton model predictions and experimental results. It is also usually familiar that confinement, while still not completely under control, seems to be supported by numerical experiments on the lattice. Less widely known are the difficulties the theory encounters in trying to connect the parton level phenomena to the hadrons detected in the final state.


Elastic Scattering High Order Correction Light Cone Gauge Exclusive Process Predict Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Many good reviews exist in the literature, see for example A.H. Mueller, Phys. Rep. 73C, (1981), 239 and references therein,ADSGoogle Scholar
  2. [1a]
    C.T.C. Sachrajda in M.K. Gaillard and R. Stora eds, “Gauge Theories in High Energy Physics”, North-Holland, (1983).Google Scholar
  3. [2]
    S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett., 31, (1973), 1153ADSCrossRefGoogle Scholar
  4. [2a]
    S.J. Brodsky and G.R. Farrar, Phys. Rev., Dl1, (1975), 1309.ADSGoogle Scholar
  5. [2b]
    V.A. Matveev, R.M. Muradyan and A.V. Tavkheldize, Lett. Nuovo Cimento 7, (1973), 710.CrossRefGoogle Scholar
  6. [3]a)
    M.A. Shupe et al., Phys. Rev., D19, (1979), 1921.ADSGoogle Scholar
  7. b).
    J. Duda et al., Z. Phys., C17, (1983), 319.ADSGoogle Scholar
  8. c).
    M. Deutsch et al., Phys. Rev., D8, (1973), 3828.ADSGoogle Scholar
  9. d).
    P.V. Landshoff and J.C. Polkinghorne, Phys. Lett., 44B, (1973), 293.ADSGoogle Scholar
  10. e).
    K.A. Jenkins et al., Phys. Rev., D21, (1980), 2445.ADSGoogle Scholar
  11. f).
    C. Baglin et al., Nucl. Phys., B216, (1983), 1.ADSCrossRefGoogle Scholar
  12. [4]
    S.J. Brodsky and B.T. Chertok, Phys. Rev. Lett., 37, (1976), 269ADSCrossRefGoogle Scholar
  13. [4a]
    S.J. Brodsky and B.T. Chertok, Phys. Rev., D14, (1976), 3003.ADSGoogle Scholar
  14. [5]
    S.J. Brodsky and G.P. Lepage, Phys. Lett., 87B, (1979), 359ADSGoogle Scholar
  15. [5a]
    S.J. Brodsky and G.P. Lepage, Phys. Rev., D22, (1980), 2157.ADSGoogle Scholar
  16. [5b]
    S.J. Brodsky, G.P. Lepage, T. Huang and P.B. MacKenzie in “Particles and Fields”, edited by A.Z. Capri and A.N. Kamal, Plenum, (1983), 83.Google Scholar
  17. [5c]
    S.J. Brodsky, G.P. Lepage and T. Huang, ibidem, 143 and references therein.Google Scholar
  18. [6]
    G.R. Farrar and D.R. Jackson, Phys. Rev. Lett., 43, (1979), 246.ADSCrossRefGoogle Scholar
  19. [6a]
    A. Duncan and A.H. Mueller, Phys. Rev., D21, (1980), 1636MathSciNetADSGoogle Scholar
  20. [6b]
    A. Duncan and A.H. Mueller, Phys. Lett., 98B, (1980), 159.ADSGoogle Scholar
  21. [7]
    V.L. Chernyak and A.R. Zhitnitsky, Phys. Rep., 112C, (1984), 175.ADSGoogle Scholar
  22. [8]
    J. Weyers, these proceedings.Google Scholar
  23. [9]
    G.R. Farrar, Phys. Rev. Lett., 53, (1984), 20.ADSGoogle Scholar
  24. [10]
    V. Sudakov, Sov. Phys., JEPT 3, (1956), 65.MathSciNetzbMATHGoogle Scholar
  25. [11]
    P.V. Landshoff, Phys. Rev., D10, (1974), 1024.ADSGoogle Scholar
  26. [12]
    S.S. Kanwal, Phys. Lett., 142B, (1984), 294.ADSGoogle Scholar
  27. [13]
    G.R. Farrar and F. Neri, Phys. Lett., 130B, (1983), 109.ADSGoogle Scholar
  28. [13a]
    P. De Causmaecker et al., Nucl. Phys., B206, (1982), 53.ADSCrossRefGoogle Scholar
  29. [14]
    S.J. Brodsky and G.P. Lepage, Phys. Rev., D22, (1980), 2157.ADSGoogle Scholar
  30. [15]
    S.J. Brodsky and G.P. Lepage, Phys. Rev., D24, (1981), 1808.ADSGoogle Scholar
  31. [16]
    P.H. Damgaard, Nucl. Phys., B211, (1983), 435.ADSCrossRefGoogle Scholar
  32. [17]
    G.R. Farrar, E. Maina and F. Neri, Nucl. Phys., B259, (1985), 702.ADSCrossRefGoogle Scholar
  33. [18]
    E. Maina, G.R. Farrar, University of Torino preprint, IFTT-85/4, (1985).Google Scholar
  34. [18a]
    E. Maina, Ph.D. Thesis, Rutgers U., (1984), unpublished.Google Scholar
  35. [19]
    G.R. Farrar, Proceedings of the VIth International Workshop on PhotonPhoton collisions, Lake Tahoe, CA, September 10–13, 1984 and Rutgers Univ. preprint RU-84-19.Google Scholar
  36. [20]
    N. Isgur and C.H. Llewellyn Smith, Phys. Rev. Lett., 52, (1984), 175.CrossRefGoogle Scholar
  37. [21]
    PLUTO Collaboration, Ch. Berger et al., Phys. Lett., 137B, (1984), 267.ADSGoogle Scholar
  38. [21a]
    MARK II Collaboration, G. Gidal, Lawrence Berkeley Laboratory preprint, LBL-19992, (1985).Google Scholar
  39. [22]
    TASSO Collaboration, R. Brandelik et al., Phys. Lett., 97B, (1980), 448Google Scholar
  40. [22a]
    M. Althoff et al., Z. Phys., C16, (1982), 13.ADSGoogle Scholar
  41. [22b]
    MARK II Collaboration, D.L. Burke et al., Phys. Lett., 100B, (1981), 153.Google Scholar
  42. [22c]
    CELLO Collaboration, H.J. Behrend et al., Z. Phys., C21, (1984), 205. PEP4/PEP9 Collaboration, J.G. Layter et al., Contribution to Leipzig Conf. on High Energy Phys., July 1984.Google Scholar
  43. [23]
    J.F. Gunion, private communication to G.R. Farrar.Google Scholar
  44. [24]
    TASSO Collaboration, M. Althoff et al., Phys. Lett., 130B, (1983), 449.ADSGoogle Scholar
  45. [25]
    TASSO Collaboration , M. Althoff et al., DESY preprint 84–015.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.Ist. di Fisica TeoricaUniversitá di Torino I.N.F.N. Sezione di TorinoItaly

Personalised recommendations