Advertisement

An Introduction to QCD Sum Rules

  • J. Weyers
Part of the NATO ASI Series book series (volume 150)

Abstract

Even if QCD is the correct theory of strong interactions, we are still a long way off from being able to actually calculate hadronic properties, such as the masses and couplings of observed particles, from the fundamental lagrangian of the theory. Since the determination of the spectrum of QCD is a problem which presumably will never be solved exactly one must of course introduce either some approximation scheme or some model (usually both). Several such schemes or models have been developed over the years. Let me mention, in particular
  • Monte Carlo simulations on a lattice

  • bag models

  • potential models

  • QCD sum rules

Keywords

Heavy Quark Operator Product Expansion Background Field Quark Condensate Gluon Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 385, 448.ADSCrossRefGoogle Scholar
  2. [2]
    Since the original work of reference [1], many excellent reviews have been written on various applications of the sum rules. Let me mention, in particular L.J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rep. 127 (1985) 1 where a complete list of references can be found.ADSCrossRefGoogle Scholar
  3. [3]
    K.G. Wilson, Phys. Rev. 179 (1969) 1499.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B249 (1985) 445.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    See e.g. M.A. Shifman, Z. Phys. C9 (1981) 347ADSGoogle Scholar
  6. [5a]
    S.N. Nikolaev and A.V. Radyushkin, Nucl. Phys. B213 (1983) 285ADSCrossRefGoogle Scholar
  7. [5b]
    W. Hubschmid and S. Mallik, Nucl. Phys. B207 (1982) 29ADSCrossRefGoogle Scholar
  8. [5c]
    J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, Nucl. Phys. B248 (1984) 1.ADSCrossRefGoogle Scholar
  9. [6]
    S. Mallik, Nucl. Phys. B234 (1984) 45.ADSCrossRefGoogle Scholar
  10. [7]
    D.J. Broadhurst, Phys. Lett. 101B (1981) 423.ADSGoogle Scholar
  11. [8]
    J. Gasser and H. Leutwyler, Phys. Rep. 87 (1982) 77.ADSCrossRefGoogle Scholar
  12. [9]
    J. Govaerts, L.J. Reinders, F. de Viron and J. Weyers (to be published).Google Scholar
  13. [10]
    B.L. Ioffe, Nucl. Phys. B188 (1981) 317.ADSCrossRefGoogle Scholar
  14. [11]
    J. Govaerts et al., reference [5]Google Scholar
  15. [11a]
    J.I. Latorre, S. Narison, P. Pascual and R. Tarrach, Phys. Lett. 147B (1984) 169.ADSGoogle Scholar
  16. [12]
    J. Govaerts, L.J. Reinders, H.R. Rubinstein and J. Weyers, Nucl. Phys. B258 (1985) 215ADSCrossRefGoogle Scholar
  17. [12a]
    J. Govaerts, L.J. Reinders and J. Weyers, Nucl. Phys. B262 (1985) 575.ADSCrossRefGoogle Scholar
  18. [13]
    I.I. Balitsky, D.I. Dyakonov and A.V. Yung, Phys. Lett. 112B (1982) 71ADSGoogle Scholar
  19. [13a]
    I.I. Balitsky, D.I. Dyakonov and A.V. Yung, Sov. J. Nucl. Phys. 35 (1982) 761.Google Scholar
  20. [13b]
    I.I. Balitsky, D.I. Dyakonov and A.V. Yung (preprint, December (1985)).Google Scholar
  21. [14]
    J. Govaerts, L.J. Reinders, P. Francken, X. Gonze and J. Weyers (to be published).Google Scholar
  22. [15]
    L.J. Reinders, H.R. Rubinstein and S. Yazaki, Nucl. Phys. B213 (1983) 109.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Weyers
    • 1
  1. 1.Institut de Physique ThéoriqueUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations