Low Energy Physics from Superstrings

Part of the NATO ASI Series book series (volume 150)


When I originally agreed to accept the kind invitation to lecture at the NATO Summer School in Cargese, my topic was to be the theory of CP violation. The developments of the past year have resulted in growing interest in the theory of superstrings, a subject which is on the one hand extraordinarily exciting in the promise it holds for solutions of many of the outstanding problems of particle physics and on the other hand rather forbidding in the amount of new knowledge which needs to be acquired by the average theorist to understand the papers that are now being published on the recent developments. These considerations have persuaded me “in extremis”, to change the subject of my lectures.


Gauge Group Gauge Boson Yukawa Coupling Zero Mode Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter 2

  1. [1]
    Some recent reviews on string theory are listed below : J.H. Schwarz, Phys. Rep. 89 (1982) 223MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [1a]
    M.B. Green, Surveys in High Energy Physics 3 (1982) 127ADSCrossRefGoogle Scholar
  3. [1b]
    L. Brink “Superstrings”, CERN TH 4006/84.Google Scholar
  4. [2]
    The World Scientific Press (Singapore) has announced publication in December of three books which should be helpful in bringing the reader up to date. They are :Google Scholar
  5. i).
    J.H. Schwarz, Superstrings;Google Scholar
  6. ii).
    Unified String Theories, Proceedings of the Santa Barbara Workshop, Aug. 1985, eds. M.B. Green and D.J. Gross;Google Scholar
  7. iii).
    Yale Summer School on High Energy Physics, June 1985, eds.F. Gursey and M. Bowick. This is not the place to try to give references to the new literature on string theories.Google Scholar
  8. [3]
    P. Ramond, Phys. Rev. D3 (1971) 2415MathSciNetADSGoogle Scholar
  9. [3a]
    A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86ADSCrossRefGoogle Scholar
  10. [3b]
    A. Neveu and J.H. Schwarz, Phys. Rev. D4 (1971) 1109.ADSGoogle Scholar
  11. [4]
    D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. Lett. 54 (1985) 46MathSciNetCrossRefGoogle Scholar
  12. [4a]
    D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. B256 (1985) 253 and Princeton preprintMathSciNetGoogle Scholar
  13. [4b]
    See also P.G.O. Freund, Phys. Lett. 151B (1985) 387ADSCrossRefGoogle Scholar
  14. [4c]
    P. Goddard and D. Olive, “Conference on Vertex Operators...”, J. Lepowsky ed. (Springer-Verlag, 1984).Google Scholar
  15. [5]
    see e.g. E. Witten, Phys. Lett. 149B (1984) 351.MathSciNetADSCrossRefGoogle Scholar

Chapter 3

  1. [1]
    H. Flanders, “Differential Forms” New York, Academic Press (publ.) 1963.zbMATHGoogle Scholar
  2. [2]
    T. Eguchi, P. Gilkey and A.J. Hanson, Phys. Rep. 66 (1980) 213.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    See also references in ch. 4 to gravitational anomalies for general introduction to Riemannian geometry as well as ref. [2] cited above.Google Scholar
  4. [4]
    For an old, but good introduction to curvature and general relativity, cf. L. Landau and E. Lifshitz, “The Classical Theory of Fields”, Addison-Wesley, publ., see also S. Weinberg, “Gravitation and Cosmo-logy” J. Wiley, publ.Google Scholar

Chapter 4

  1. [1]
    Three recent references on gauge field anomalies are : B. Zumino “Chiral Anomalies and Differential Geometry” in Relativity Groups and Topology (B.S. De Witt and R. Stora, eds.) North Holland, 1983Google Scholar
  2. [1a]
    B. Zumino, T.S. Wu and A. Zee, Nucl. Phys. B239 (1984) 477MathSciNetADSCrossRefGoogle Scholar
  3. [1b]
    P.H. Frampton and T.W. Kephart, Phys. Rev. Lett. 50B (1983) 1343, 1437.ADSCrossRefGoogle Scholar
  4. [2]
    L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234 (1984) 269.MathSciNetADSCrossRefGoogle Scholar
  5. [3]
    L. Alvarez-Gaume and P. Ginsparg, Nucl. Phys. B243 (1984) 439MathSciNetADSGoogle Scholar
  6. [3a]
    L. Alvarez-Gaume and P. Ginsparg, ibid Annals of Physics 161 (1985) 423.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [4]
    See also ref. [2] of ch. 3.Google Scholar
  8. [5]
    M.B. Green and J.H. Schwarz, Phys. Lett. 149B (1984) 117.MathSciNetADSCrossRefGoogle Scholar
  9. [6]
    E. Witten, Phys. Lett. 149B (1984) 351.MathSciNetADSCrossRefGoogle Scholar
  10. [7]
    E. Witten, “Global Gravitational Anomalies”, “Global Anomalies in String Theory”, Princeton University Preprints (1985).Google Scholar

Chapter 5

  1. [1]
    A good general reference is J. Wess and J. Bagger, “Supersymmetry and Supergravity”, Princeton University Press (1983).zbMATHGoogle Scholar
  2. [2]
    E. Cremmer, J. Scherk and S. Ferrara, Phys. Lett. 74B (1978) 61.ADSCrossRefGoogle Scholar
  3. [3]
    J. Scherk in Recent Developments in Gravitation, Cargese, Plenum Press (1978) eds. M. Levy and S. Deser.Google Scholar
  4. [4]
    E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A.H. Chamseddine, Nucl. Phys. B185 (1981) 403.ADSCrossRefGoogle Scholar
  6. [6]
    E. Bergshoff, M. De Roo, B. De Wit, and P. Van Nieuwenhuizen, Nucl. Phys. B195 (1982) 97.ADSCrossRefGoogle Scholar
  7. [7]
    G.F. Chapline and N.S. Manton, Phys. Lett. B120 (1983) 105.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    See Chapter 4, reference [5].Google Scholar

Chaper 6

  1. [1]
    We are following here R.N. Mohapatra and B. Sakita, Phys. Rev. D21 (1980) 1062.MathSciNetADSGoogle Scholar
  2. [2]
    Clearly it is awkward to define Γ 1,2=t2,1 rather than Γ1,2 = 2 but we wish to display an explicit’form For the Γ matrices’keeping the notation of ref. [1]. It would have been preferable to exchange Γ2i_1 and Γ2i-in (6.7).Google Scholar
  3. [3]
    A quick summary of E6, branching rules, etc. is contained in R. Slansky, Phys. Rep. 79 (1981) 1.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    See e.g., Y. Achiman, S. Aoyama and J.W. Van Holten, “Gauged Supersymmetric σ-Models and E6 / S0(10) x U(l)”, Wuppertal preprint, Jan. 1985.Google Scholar
  5. [5]
    For an interesting discussion of exceptional groups, cf. F. Gursey in “To Fulfill a Vision” Jerusalem Einstein Centennial Celebr., Y. Neeman, ed. Addison-Wesley (publ. 1981).Google Scholar

Chapter 7

  1. [1]
    Z. Horvath and L. Palla, Nucl. Phys. B142 (1978) 327MathSciNetADSCrossRefGoogle Scholar
  2. [1a]
    L. Palla, Proceedings of 1978 Tokyo Conf. on High Energy Physics, p. 629.Google Scholar
  3. [2]
    E. Witten, Nucl. Phys. B186 (1981) 412.MathSciNetADSCrossRefGoogle Scholar
  4. [3]
    N.S. Manton, Nucl. Phys. B193 (1981), 331Google Scholar
  5. [3a]
    G. Chapline and N. Manton, Nucl. Phys. B184 (1981) 391ADSCrossRefGoogle Scholar
  6. [3b]
    G. Chapline and R. Slansky, Nucl. Phys. B209 (1982) 461.ADSCrossRefGoogle Scholar
  7. [4]
    C. Wetterich, Nucl. Phys. B211 (1983) 177.MathSciNetADSCrossRefGoogle Scholar
  8. [5]
    S. Randjbar-Daemi, A. Salam and A. Strathdee, Nucl. Phys. B214 (1983) 491.MathSciNetADSCrossRefGoogle Scholar
  9. [5a]
    S. Randjbar-Daemi, A. Salam and A. Strathdee, Phys. Lett. B124 (1983) 345.MathSciNetADSCrossRefGoogle Scholar
  10. [6]
    E. Witten, Proceedings of Shelter Island II, p. 227 (published by M.I.T. Press, 1985).Google Scholar
  11. [7]
    Some representative references are :Google Scholar
  12. [7a]
    M. Gell-Mann, P. Ramond and R. Slansky in “Supergravity” ed. P. Van Nieuwenhuizen and D.Z. Freedman (North Holland, 1979);Google Scholar
  13. [7b]
    F. Wilczek and A. Zee, Phys. Rev. D25 (1982) 553;ADSGoogle Scholar
  14. [7c]
    H. Georgi, Nucl. Phys. B156 (1979) 126;MathSciNetADSCrossRefGoogle Scholar
  15. [7d]
    J. Kim, Phys. Rev. Lett. 45 (1980) 1916;ADSCrossRefGoogle Scholar
  16. [7e]
    H. Sato, Phys. Rev. Lett. 45 (1980) 1997;ADSCrossRefGoogle Scholar
  17. [7f]
    A. Davidson et al., Phys. Rev. Lett. 45 (1980) 1335;CrossRefGoogle Scholar
  18. [7g]
    J. Malampi and K. Engvist, Phys. Lett. 97B (1980) 217.ADSCrossRefGoogle Scholar
  19. [8]
    M. Atiyah and F. Hirzebruch, “Essays on Topology and Related Topics” A. Haefliger and R. Narasimahan eds. (Springer-Verlag, New York 1970).Google Scholar
  20. [9]
    E. Witten, J. Diff. Geom. 17 (1982) 661.MathSciNetzbMATHGoogle Scholar
  21. [10]
    See for a review S. Coleman, “The Uses of Instantons” in “Lectures on Field Theory”, Oxford University press (1985).Google Scholar
  22. [11]
    See ref. [2], ch. 3 for a detailed discussion of index theorem. Other good references are Luis Alvarez-Gaume, “Supersymmetry and Index Theory”, Lectures at Bonn Summer School 1984, to be published; J. Manes and B. Zumino, LBL-20234 preprint 1985Google Scholar
  23. [11a]
    L. Alvarez-Gaume, Math. Phys. 90 (1983) 161MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [11b]
    D. Friedan and P. Windey, Nucl. Phys. B235 (1984) 295.MathSciNetGoogle Scholar
  25. [12]
    B. Zumino, Proceedings of Shelter Island II, p. 79 (published by M.I.T. Press, 1985).Google Scholar

Chapter 8

  1. [1]
    Ch. 5, reference [7].Google Scholar
  2. [2]
    CHSW stands for P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Alternative schemes have been considered, following CHSW. For ins-tance, manifolds with non-vanishing H have been considered by I. Bars, Phys. Rev. D33 (1986) 383; mnpI. Bars, D. Nemeschansky and S. Yankielowicz, “Torsion in Super-strings” SLAC-Pub 3758 (1985).MathSciNetADSGoogle Scholar
  4. [4]
    E. Calabi in Algebraic Geometry and Topology : A Symposium in Honor of S. Lefshetz (Princeton University Press) 1957Google Scholar
  5. [4a]
    S.T. Yau, Proc. Nat. Acad. Sci. 74 (1978) 177.Google Scholar
  6. [5]
    K. Uhlenbeck and S.T. Yau, to be published, presents an analysis of this equation.Google Scholar
  7. [6]
    For a detailed discussion which does not assume identification of the spin connection and SU(3) gauge fields, see I. Bars and M. Visser, “Number of Massless Fermion Fields in Superstring Theory”, Univ. of So. Calif, preprint 85/016 (1985). See also R. Nepomechie, Y.S. Wu and A. Zee, Phys. Lett. 158B (1975) 311.MathSciNetADSGoogle Scholar
  8. [7]
    E. Witten, Nucl. Phys. B258 (1985) 75.MathSciNetADSCrossRefGoogle Scholar
  9. [8]
    E. Witten, “New Issues in Manifolds of SU(3) Holonomy”, Princeton preprint 1985.Google Scholar
  10. [9]
    A. Strominger and E. Witten, “New Manifolds for Superstring Compactification”, Princeton preprint.Google Scholar

Chapter 9

  1. [1]
    We are following here again P. Candelas et al., ref. [2] of chapter 8.Google Scholar
  2. [2]
    E. Witten, Nucl. Phys. B258 (1985) 75.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.D. Breit, B.A. Ovrut and G. Segrè, Phys. Lett. 158B (1985) 33ADSCrossRefGoogle Scholar
  4. [3a]
    A. Sen, Phys. Rev. Lett. 55 (1985) 33.ADSCrossRefGoogle Scholar
  5. [4]
    Y. Hosotani, Phys. Lett. 126B (1983) 303.ADSGoogle Scholar
  6. [5]
    For a detailed discussion of the group theoretic techniques involved see e.g., R. Slansky, Phys. Rep. 79 (1981) 1.MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    J. Pati and A. Salam, Phys. Rev. D10 (1974) 275.ADSGoogle Scholar
  8. [7]
    See e.g., F. Gursey and M. Serdaroglu, Nuovo Cimento 65A (1981) 337ADSCrossRefGoogle Scholar
  9. [7a]
    F. Gursey, P. Ramond and P. Sikivie, Phys. Lett. 60B (1976) 77.Google Scholar
  10. [8]
    M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi and N. Seiberg, “Superstring Model Building”, Nucl. Phys. B259 (1985) 543.MathSciNetADSGoogle Scholar
  11. [8a]
    See also : S. Ceccotti, J.P. Derendinger, S. Ferrara, L. Girardello and M. Roncadelli, Phys. Lett. 156B (1985) 318.ADSCrossRefGoogle Scholar
  12. [9]
    See for example, A. Strominger and E. Witten, “New Manifolds for Superstring Compactification”, Princeton (1985) to be published in Nucl. Phys. A. Strominger “Yukawa Couplings in Superstring Compactification” ITP (Santa Barbara) preprint (1985).Google Scholar
  13. [10]
    For a good recent discussion of the overall picture see : J.P. Derendinger, L.E. Ibanez and H.P. Nilles, “On the Low Energy Limit of Superstring Theories”, CERN Th 4228 preprint (1985).Google Scholar

Chapter 10

  1. [1]
    E. Witten, “Dimensional Reduction of Superstring models”, Princeton preprint. Phys. Lett. 155B (1985) 151.MathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, Ref. [5], section 2.Google Scholar
  3. [3]
    E. Cremmer, S. Ferrara, L. Girardello and A. Von Proeyen, Phys. Lett. 116B (1982) 231ADSCrossRefGoogle Scholar
  4. [3a]
    E. Cremmer, S. Ferrara, L. Girardello and A. Von Proeyen, Nucl. Phys. B212 (1983) 412ADSGoogle Scholar
  5. [3b]
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. Van Nieuwenhuizen, Nucl. Phys. B147 (1979) 105.ADSCrossRefGoogle Scholar
  6. [4]
    The formulation in terms of Kähler geometry is given in : J. Bagger and E. Witten, Phys. Lett. 115B (1982) 202MathSciNetADSGoogle Scholar
  7. [4a]
    J. Bagger and E. Witten, Phys. Lett. 118B (1982) 303MathSciNetGoogle Scholar
  8. [4b]
    J. Bagger and E. Witten, J. Bagger, Nucl. Phys. B211 (1983) 302.MathSciNetADSCrossRefGoogle Scholar
  9. [5]
    We have followed reference [1] so far. This form of Kähler potential was independently shown to arise in the analysis of so-called 16/16 supergravity models, cf. W. Lang, J. Louis and B. Ovrut, Univ. of Penn., preprint UPR-0280T (1985) and Karlsruhe preprint KA-THE P 85-2 (1985). See also earlier references to G. Girardi, R. Grimm, M. Muller and J. Wess, Z. Phys. C26 (1986) 123; C26 (1984) 427; Phys. Lett. 147B (1984) 81. It is interesting to speculate on which of these two paths is a more realistic approximation to superstring phenomena.Google Scholar
  10. [6]
    J.P. Derendinger, L.I. Ibanez and H.P. Nilles, ref. [10], section 9.Google Scholar

Chapter 11

  1. [1]
    J.P. Derendinger, L.E. Ibanez and H.P. Nilles, Phys. Lett. 155B (1985) 65.ADSCrossRefGoogle Scholar
  2. [2]
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. 156B (1985) 55.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.P. Derendinger, L.I. Ibanez and H.P. Nilles, “On the Low Energy Limit of Superstring Theories”, CERN -TH. 4228/85 preprint.Google Scholar
  4. [4]
    For a recent discussion see R. Rohm and E. Witten, “The Antisymmetric Tensor Field in Superstring Theory” Princeton University preprint (Nov. 1985). See also R. Nepomechie, Y.S. Wu and A. Zee, Phys. Lett. 158B (1985) 311.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Witten, ref. [1], ch. 10.Google Scholar
  6. [6]
    J. Ellis, C. Kounnas and D.V. Nanopoulos, Nucl. Phys. B247 (1984) 373ADSCrossRefGoogle Scholar
  7. [6a]
    N.P. Chang, S. Ouvry and X. Wu, Phys. Rev. Lett. 51 (1983) 327ADSCrossRefGoogle Scholar
  8. [6b]
    E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Phys. Lett. 133B (1983) 61.MathSciNetADSCrossRefGoogle Scholar
  9. [6c]
    See also ref. [5], ch. 10; R. Barbieri, S. Ferrara, D.V. Nanopoulos and K. Stelle, Phys. Lett. 113B (1982) 219.ADSCrossRefGoogle Scholar
  10. [6d]
    See also M. Mangano, Z. Phys. C28 (1985) 613.ADSGoogle Scholar
  11. [7]
    This section is a condensed version of J.D. Breit, B.A. Ovrut and G. Segrè, Phys. Lett. 162B (1985) 303.ADSCrossRefGoogle Scholar
  12. [8]
    S. Coleman and E. Weinberg, Phys. Rev. D7 (1983) 2369.Google Scholar
  13. [9]
    For complete references, see e.g. H.P. Nilles, Phys. Rep. 110 (1984) 1. Some papers are : J. Polonyi, Budapest preprint K-FK1–38 (1977)ADSCrossRefGoogle Scholar
  14. [9a]
    A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49 (1982) 970ADSCrossRefGoogle Scholar
  15. [9b]
    L. Alvarez-Gaume, J. Polchinski and M. Wise, Nucl. Phys. B221 (1983) 435Google Scholar
  16. [9c]
    B. Ovrut and J. Wess, Phys. Lett. 112B (1982) 347ADSCrossRefGoogle Scholar
  17. [9d]
    L.I. Ibanez, Nucl. Phys. B218 (1983) 514ADSCrossRefGoogle Scholar
  18. [9e]
    L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27 (1983) 2369ADSGoogle Scholar
  19. [9f]
    H.P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 120B (1983) 346ADSCrossRefGoogle Scholar
  20. [9g]
    J. Ellis, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. 121B (1983) 1293Google Scholar
  21. [9h]
    For recent examples, see e.g. M. Cvetic and C. Preitschopf, SLAC-PUB-3685 (1985)Google Scholar
  22. [9i]
    R. Barbieri and E. Cremmer, CERN TH 4177 (1985).Google Scholar
  23. [10]
    R. Barbieri and S. Ceccotti, Z. Phys. C17 (1983) 183ADSGoogle Scholar
  24. [10a]
    M. Srednicki and S. Theisen, UCSB preprint.Google Scholar
  25. [11]
    P. Binetruy and M.K. Gaillard, “Radiative Corrections in Compactified Superstring Models” LBL-19972 preprint (1985).Google Scholar
  26. [12]
    J. Ahn and J. Breit, “On One Loop Effective Lagrangians and Compactified Superstrings”, Univ. of Pennsylvania preprint (1985).Google Scholar
  27. [13]
    M. Dine and N. Seiberg, Phys. Rev. Lett. 55 (1985) 366.MathSciNetADSCrossRefGoogle Scholar
  28. [14]
    V.S. Kaplunovsky, Phys. Rev. Lett. 55 (1985) 1036.ADSCrossRefGoogle Scholar

Chapter 12

  1. [1]
    For early references, see ch. 9, refs. [8–10]. Among more recent works, a sample is given by V. Kaplunosky and C. Nappi, “Phenomenological Implications of Superstring Theory”, Princeton preprint 1985; P. Binetruy, S. Dawson, I. Hinchcliffe and M. Sher, “Phenomenologically Viable Models from Superstrings”. E. Cohen, J. Ellis; K. Enqvist and D.V. Nanopoulos, CERN TH preprints 4222/85, 4195/85; R. Holman and D.B. Reiss, “Fermion Masses in E8 x E8 Superstring Theories”, Fermilab. preprint 1985; T. Hubsch, H. Nishino and J.G. Pati, “Do Superstrings Lead to Preons”, to appear in Phys. Lett. B.; C.P. Burgess, A. Foni and F. Quevedo, “Low Energy Effective Action for the Superstring”, Univ° of Texas Preprint; R.N. Mohapatra, “A mechanism for Understanding Small Neutrino Masses in SUSY Theories”, Univ. of Maryland preprint (1985); S. Nandi and U. Sarkar, Univ. of Texas Preprint (1985).Google Scholar
  2. [2]
    K. Choi and J.E. Kim, Phys. Lett. 154B (1985) 393; S.M. Barr, Phys. Lett. 154B (1985) 397; K. Yamamoto, Univ. of No. Carolina preprint (1985); K. Choi and J.E. Kim, Seoul preprint SNUHE 85/10; M. Dine and N. Seiberg, “String Theory and the Strong CP Problem”, CUNY preprint 1985; X.G. Wen and E. Witten, “World Sheet Instantons and the Peccei-Quinn Symmetry”, Princeton preprint. [3] M.J. Bowick, L. Smolin and L.C.R. Widjewardhana, Phys. Rev. Lett. 56 (1986) 424; J. Lazarides, G. Panagiotakopoulos and Q. Shafi, Phys. Rev. Lett. 56 (1986) 432 and Bartol preprint BA-85 “Baryogenesis and the Gravitino Problem in Superstring Theories”; J.A. Stein-Schabes and M. Gleiser, “Low Energy Superstring Cosmology”, Fermilab preprint 1985; R. Holman and T. Kephart, “Axion Cosmology in Automatic E6 x U(l) Models”, Fermilab pub, 85/117; E.W. Kolb, D. Seckel and M.S. Turner, “The Shadow World”, Fermilab preprint.Google Scholar
  3. [4]
    See e.g., M. Evans and B.A. Ovrut, “Splitting the Superstring Vacuum Degeneracy”, Rockefeller preprint 1985.Google Scholar
  4. [5]
    L. Dixon, J.A. Harvey, C. Vafa and E. Witten, “Strings on Orbifolds”, Princeton preprint; E. Witten, “Twistor-Like Transform in Ten Dimensions”, Princeton preprint.Google Scholar
  5. [6]
    X.G. Wen and E. Witten, “Electric and Magnetic Charges in Superstring Models”, to appear in Nucl. Phys. B.Google Scholar
  6. [7]
    For a general discussion see E. Witten, “Topological Tools in Ten Dimensional Physics”, and also E. Witten, ref.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations