Advertisement

The Elliptic Interpretation of Black Holes and Quantum Mechanics

Chapter
  • 77 Downloads
Part of the NATO ASI Series book series (volume 150)

Abstract

Preamble. The lectures as delivered contained an elementary introduction to the classical theory of black holes together with an account of Hawking’s original derivation of the thermal emission from black holes in the quantum theory. I also described what is here called the “elliptic interpretation” partly because of its possible relevance to the lectures of Professor ’t Hooft. It seemed to me that there was little point in repeating in the written version what is rather standard material so I have decided to give a rather more detailed account of the elliptic interpretation and refer the reader to the original literature [1, 2] for the elementary material.

Keywords

Black Hole Time Reversal Asymptotic Region White Hole Feynman Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Les Houches Lectures 1972 “Black Holes” ed. B.S. DeWitt and C. de Witt.Google Scholar
  2. [2]
    S.W. Hawking, Comm. Math. Phys. 248 (1974) 30.MathSciNetGoogle Scholar
  3. [3]
    D. Gross, Nucl. Phys. B236 (1984) 349.ADSCrossRefGoogle Scholar
  4. [4]
    G. ’t Hooft, Journal of Geometry and Physics 1 (1984) 45MathSciNetADSCrossRefGoogle Scholar
  5. [4a]
    G. ’t Hooft, Nucl. Phys. B256 (1985) 727, (and these proceedings).ADSCrossRefGoogle Scholar
  6. [5]
    K. Freese, C.T. Hill, M. Mueller, Nucl. Phys. B255 (1985) 693.MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    T.D. Lee, Columbia preprint CU-TP 305 “Are Black Holes Black”.Google Scholar
  8. [7]
    S.W. Hawking, Nature (Lond) 248 (1974) 30.ADSCrossRefGoogle Scholar
  9. [8]
    W. Israel, Phys. Lett. 57A (1976) 107.MathSciNetADSGoogle Scholar
  10. [9]
    W. Rindler, Phys. Rev. Lett. 15 (1965) 1001MathSciNetADSCrossRefGoogle Scholar
  11. [9a]
    W. Israel, Phys. Rev. 143 (1966) 1016MathSciNetADSCrossRefGoogle Scholar
  12. [9b]
    W. Israel, Nature (Lond) 211 (1966) 466ADSCrossRefGoogle Scholar
  13. [9c]
    F.J. Belinfante, Phys. Lett. 20A (1966) 25Google Scholar
  14. [9d]
    J.L. Anderson and R. Gautreau, Phys. Lett. 20A (1966) 24.Google Scholar
  15. [10]
    S.W. Hawking and J.B. Hartle, Phys. Rev. D13 (1976) 2188.ADSGoogle Scholar
  16. [11]
    G.W. Gibbons and M.J. Perry, Proc. Roy. Soc. (Lond) A358 (1978) 467.MathSciNetADSCrossRefGoogle Scholar
  17. [12]
    B. Allen, Santa Barbara preprint UCSB-TM3-1985 “Vacuum States in de Sitter Space”.Google Scholar
  18. [13]
    A. Ashtekar and A. Magnon, Proc. Roy. Soc. (Lond) A346 (1975) 375.MathSciNetADSCrossRefGoogle Scholar
  19. [14]
    C.W. Misner, Annals of Physics 24 (1963) 102–117.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [15]
    R.W. Lindquist, J. Math. Phys. 4 (1963) 938.MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [16]
    E. Schrodinger, “Expanding Universes” Cambridge University Press.Google Scholar
  22. [17]
    S. Avis, C.J. Isham and D. Storey, Phys. Rev. D18 (1978) 356.MathSciNetADSGoogle Scholar
  23. [18]
    P. Breitenlohner and D.Z. Freedman, Ann. Phys. 144 (1982) 249.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [19]
    D.W. Dusenden and D.Z. Freedman, MIT preprint, CTP n° 1291 (1985).Google Scholar
  25. [20]
    B. Allen and C.A. Lutken, private communication.Google Scholar
  26. [21]
    A.D. Sakharov, J.E.T.P. 52 (1980) 348.Google Scholar
  27. [22]
    S.W. Hawking, “The Arrow of Time in Cosmology”, Phys. Rev. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.D.A.M.T.P.University of CambridgeCambridgeUK

Personalised recommendations