Beyond the Standard Model

Part of the NATO ASI Series book series (volume 150)


The standard model of particle interactions is a complete and relatively simple theoretical framework which describes all the observed fundemental forces. It consists of quantum chromodynamics (QCD) [1] and of the electro-weak theory of Glashow, Salam and Weinberg [2]. The former is the theory of coloured quarks and gluons, which underlies the observed phenomena of strong interactions, the latter leads to a unified description of electromagnetism and of weak interactions. The inclusion of the classical Einstein theory of gravity completes the set of established basic knowledge. The standard model is in agreement with essentially all of the experimental information which is very rich by now. The recent discovery [3] of the charged and neutral intermediate vector bosons of weak interactions at the expected masses has closed a really important chapter of particle physics. Never before the prediction of new particles was so neat and quantitatively precise.


Higgs Boson Gauge Group Quantum Gravity Gauge Boson SUSY Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Gell-Mann, Suppl. Nuovo Cimento 9 (1972) 733Google Scholar
  2. [1a]
    H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47 (1973) 365ADSCrossRefGoogle Scholar
  3. [1b]
    S. Weinberg, Phys. Rev. Lett. 31 (1973) 494ADSCrossRefGoogle Scholar
  4. [1c]
    S. Weinberg, Phys. Rev. D8 (1973) 4482ADSGoogle Scholar
  5. [1d]
    D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343ADSCrossRefGoogle Scholar
  6. [1e]
    D.J. Gross and F. Wilczek, Phys. Rev. Lett. D8 (1973) 3633.ADSGoogle Scholar
  7. [2]
    S.L. Glashow, Nucl. Phys. 22 (1961) 579CrossRefGoogle Scholar
  8. [2a]
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264ADSCrossRefGoogle Scholar
  9. [2b]
    A. Salam, Proceedings of the VIII Nobel Symposium (Stockholm, 1968) p. 367.Google Scholar
  10. [3]
    The UA1 and UA2 Collaborations at CERN.Google Scholar
  11. [4]
    G.G. Ross, “Grand Unification”, Benjamin 1985. GUTS were introduced by J.C. Pati, A. Salam, Phys. Rev. Lett. 31 (1973) 661ADSCrossRefGoogle Scholar
  12. [4a]
    Pati, A. Salam, Phys. Rev. D10 (1974) 275ADSGoogle Scholar
  13. [4b]
    H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32 (1974) 438.ADSCrossRefGoogle Scholar
  14. [5]
    E. Farhi, L. Susskind, Phys. Rep. 174 (1981) 277.ADSCrossRefGoogle Scholar
  15. [6]
    J. Bjorken, Phys. Rev. D19 (1979) 335MathSciNetADSGoogle Scholar
  16. [6a]
    P. Hung and J. Sakurai, Nucl. Phys. B143 (1981) 81ADSGoogle Scholar
  17. [6b]
    H. Terazawa, Prog. Theor. Phys. 64 (1980) 1963Google Scholar
  18. [6c]
    H. Harari and N. Seiberg, Phys. Lett. B98 (1981) 269ADSCrossRefGoogle Scholar
  19. [6d]
    O.W. Greenberg and J. Sucher, Phys. Lett. B99 (1981) 339ADSCrossRefGoogle Scholar
  20. [6f]
    L. Abbott and E. Fahri, Nucl. Phys. B189 (1981) 547ADSCrossRefGoogle Scholar
  21. [6g]
    H. Fritzsch, R. Kogerler and D. Schildknecht, Phys. Lett. Bl14 (1982) 157.ADSCrossRefGoogle Scholar
  22. [7]
    P. Fayet, S. Ferrara, Phys. Rep. 32 (1977) 251MathSciNetADSGoogle Scholar
  23. [7a]
    H.P. Nilles, Phys. Rep. 110 (1984) 1ADSCrossRefGoogle Scholar
  24. [7b]
    H.E. Haber, G.L. Kane, Phys. Rep. 117 (1985) 71.ADSGoogle Scholar
  25. [8]
    P. Van Nieuwenhuizen, Phys. Rep. 68 (1981) 189MathSciNetADSCrossRefGoogle Scholar
  26. [8a]
    J. Bagger, J. Wess, Princeton Univ. Press 1983.Google Scholar
  27. [9]
    E. Cremmer, B. Julia, Nucl. Phys. B159 (1979) 141.MathSciNetADSCrossRefGoogle Scholar
  28. [10]
    J.H. Schwarz, Phys. Rep. 69 (1982) 223ADSCrossRefGoogle Scholar
  29. [10a]
    M.B. Green, Surveys H. Energy Phys. 3 (1983) 127ADSCrossRefGoogle Scholar
  30. [10b]
    L. Brink, Superstrings, CERN-TH 4006 (1984).Google Scholar
  31. [11]
    Dual Theory, M. Jacob editor, North-Holland, 1974.Google Scholar
  32. [12]
    M.B. Green, J.H. Schwarz, Phys. Lett. 149B (1984) 117.MathSciNetADSCrossRefGoogle Scholar
  33. [13]
    D.J. Gross, J.A. Harvey, E. Martinec, R. Rohm, Phys. Rev. Lett. 54 (1985) 502.MathSciNetADSCrossRefGoogle Scholar
  34. [14]
    E. Witten, Phys. Lett. 155B (1985) 151MathSciNetADSCrossRefGoogle Scholar
  35. [14a]
    P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, B258 (1985) 46MathSciNetGoogle Scholar
  36. [14b]
    E. Witten, Nucl. Phys. B258 (1985) 46.MathSciNetADSGoogle Scholar
  37. [15]
    J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 275ADSGoogle Scholar
  38. [15a]
    R.N. Mohapatra and J.C. Pati, Phys. Rev. Dll (1975) 566ADSGoogle Scholar
  39. [15b]
    R.N. Mohapatra and G. Senjanovich, Phys. Rev. Lett. 40 (1980) 912ADSCrossRefGoogle Scholar
  40. [15c]
    R.N. Mohapatra and G. Senjanovich, Phys. Rev. D23 (1981) 165.ADSGoogle Scholar
  41. [15d]
    For a recent review see : R.N. Mohapatra, Proceedings of the NATO Summer School, Munich, W. Germany, 1983.Google Scholar
  42. [16]
    J.A. Bagger, S. Dimopoulos, E. Masso, M.H. Reno, Nucl. Phys. B258 (1985) 565ADSCrossRefGoogle Scholar
  43. [16a]
    G. Senjanovic, F. Wilczek, A. Zee, Phys. Lett. 141B (1984) 389.ADSCrossRefGoogle Scholar
  44. [17]
    A. De Rujula, H. Georgi, S. Glashow in 5th Workshop of Grand Unification ed. by K. Kang et al., World Sci. (1984).Google Scholar
  45. [18]
    R. Barbieri, D. Nanopoulos, Phys. Lett. 91B (1980) 369.ADSCrossRefGoogle Scholar
  46. [19]
    H. Georgi, H.R. Quinn, S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.ADSCrossRefGoogle Scholar
  47. [20]
    D. Chang, R.N. Mohapatra, J.M. Gipson, R.E. Marshak, M.K. Parida, Phys. Rev. D31 (1985) 1718.ADSGoogle Scholar
  48. [21]
    R. Barbieri, S. Ferrara, D. Nanopoulos, Z. Phys. C13 (1982) 267ADSGoogle Scholar
  49. [21a]
    R. Barbieri, S. Ferrara, D. Nanopoulos, Phys. Lett. 116B (1982) 6ADSGoogle Scholar
  50. [21b]
    see also R. Barbieri, S. Ferrara, Surveys in H. En. Phys. 4 (1983) 33.ADSCrossRefGoogle Scholar
  51. [22]
    C. Kounnas, A.B. Lahanas, D. Nanopoulos, M. Quiros, Phys. Lett. 132B (1983) 95ADSCrossRefGoogle Scholar
  52. [22a]
    C. Kounnas, A.B. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B236 (1984) 438.ADSCrossRefGoogle Scholar
  53. [23]
    G. Altarelli, B. Mele, S. Petrarca, Phys. Lett. 160B (1985) 317 and Proceedings of the EPS Conf. on High En. Phys., Bari 1985.ADSCrossRefGoogle Scholar
  54. [24]
    J. Ellis, H. Kowalski, CERN-TH 4126 (1985). A recent analysis can also be found in R.M. Barnett, H.E. Haber, G.L. Kane, LBL-18990 (SLAC-PUB-3551 (1985)).Google Scholar
  55. [25]
    C. Rubbia, Proceedings of the Kyoto Symp. on Leptons and Photons, 1985.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità “La Sapienza”RomaItaly
  2. 2.Sezione di RomaI.N.F.N.Italy

Personalised recommendations