Advertisement

Particle Physics Without Accelerators (selected topics)

Chapter
  • 77 Downloads
Part of the NATO ASI Series book series (volume 150)

Abstract

Particle physics without accelerators covers a wide variety of subjects. Only the following three main topics are discussed in this report :
  1. 1)

    High energy cosmic ray experiments, with a particular emphasis on the observations related to Cygnus X3 and their implications.

     
  2. 2)

    Neutrino physics : Majorana or Dirac neutrinos, neutrino masses, neutrino oscillations.

     
  3. 3)

    Constancy of the coupling constants over a long period of time based on the discovery of a fossil nuclear reactor in Gabon.

     

It is relatively easy to define what is the study of elementary particles with accelerators. An accelerator is any device which by means of intense electric fields, accelerates charged particle beams. The process starts from a hydrogen, deuterium, or helium bottle (or heavier element). Atoms are stripped by means of an electric field, and then acceleration of either the electrons or the stripped atoms can take place. A typical experiment will be the study of the collisions between beam particles and a specific target. It is much more complicated to tell what is exactly the study of elementary particles without accelerator : all what we know about the experiments is that they do not use accelerators, but obviously this is not enough since it has to deal with elementary particle physics. So the discovery of new particles without accelerators, mass measurements, branching ratios like double beta decay belong to this field. Nobody will object to include also the study of the properties of the interactions between elementary particles : quantum number conservation, hints to ultra high energy phenomena which cannot, at least presently, be reached by accelerators.

Particle Physics without accelerators aims for fundamental discoveries. Obviously, except for cosmic ray experiments, this is a very low Q2 physics. Nevertheless this is partly compensated by the fact that one can search for very rare processes by looking during a very long period of time at many elementary particles. In that sense this is a nice complementary way to study elementary particle physics compared to accelerator techniques.

A tentative list of the various topics is given below :
  1. 1.

    Hints for very high energy interactions from cosmic ray experiments

    Search for ultrahigh energy pointlike source of cosmic rays : the possible new physics involved by the recent discoveries concerning Cygnus X3.

     
  2. 2.

    Search for new particles : axions, monopoles and quarks.

     
  3. 3.

    Neutrino physics and weak interactions

     
  4. 4.

    Experiments related to Grand Unified Theories :

    baryon number conservation (proton lifetime.

    neutron antineutron oscillations)

    electric dipole moment of the neutron (involves CP conservation).

     
  5. 5.

    Constancy of the coupling constants over a long period of time (fossil reactor).

     

It can be argued whether or not we should include quantum mechanic tests (Bell inequalities and Aspect experiments), or general relativity tests (search for gravitational waves for instance ...) and quantum electrodynamics related experiments (g-2 for the electron).

In the two lectures given at Cargese 85, I had to choose between all these topics. Only points 1, 3 and 5 were covered and will be presented here. A more detailed report which will discuss all the above subjects will be published in Physics Reports together with M. Cribier and J. Rich [1].

This following report is not intended to be complete. Specially, recent experimental results might be missed. The main goals are ly to introduce the subjects and the motivations, to describe in a itical way the present status, and to foresee the main perspectives.

Keywords

Neutrino Oscillation Solar Neutrino Grand Unify Theory Atmospheric Neutrino Majorana Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Particle Physics without Accelerators, M. Cribier, M. Spiro, J. Rich, to be published in Physics Reports.Google Scholar
  2. [2]
    A. Bonnetti et al., Nuovo Cimento 10 (1953) 345.CrossRefGoogle Scholar
  3. [3]
    N. Yamdagni, Event Structure in collider and cosmics ray experiments, Physics in Collision (Stockholm, June 82).Google Scholar
  4. [4]
    G.B. Yodh et al., Phys. Rev. Lett. 28 (1972) 1005.ADSCrossRefGoogle Scholar
  5. [5]
    M. Bozzo et al., Phys. Lett. 147B (1984) 392.ADSGoogle Scholar
  6. [6]
    G.B. Yodh, Workshop on Elastic and Diftractive Scattering at the Collider and Beyond, Blois (June 1985).Google Scholar
  7. [7]
    C.M.G. Lattes et al., Phys. Rep. 65 (1980) 151.ADSCrossRefGoogle Scholar
  8. [8]
    K. Alpgard et al., Phys. Lett. 107B (1981) 315.ADSGoogle Scholar
  9. [9]
    K. Alpgard et al., Phys. Lett. 107B (1981) 310.ADSGoogle Scholar
  10. [10]
    G. Arnison et al., Phys. Lett. 107B (1981) 320.ADSGoogle Scholar
  11. [11]
    M. Banner et al., Phys. Lett. 115B (1982) 59.ADSGoogle Scholar
  12. [12]
    G. Arnison et al., Phys. Lett. 118B (1982) 167.ADSGoogle Scholar
  13. [13]
    M.Banner et al., Phys. Lett. 118B (1982) 203.ADSGoogle Scholar
  14. [14]
    S.I. Nikolovsky et al., Proc. 17th Intern. Cosmic Ray Conf. (Plovdiv, 1977)Google Scholar
  15. [14]
    V.I. Yakovlev et al., Proc. 17th Intern. Cosmic Ray Conf. (Plovdiv, 1977).Google Scholar
  16. [15]
    K. Alpgard et al., Phys. Lett. 115B (1982) 71.ADSGoogle Scholar
  17. [16]
    G. Arnison et al., Phys. Lett. 122B (1983) 189.ADSGoogle Scholar
  18. [17]
    J.M. Dickey, Astrophysical Journal 273 (1983) 71.ADSCrossRefGoogle Scholar
  19. [18]
    K.O. Mason et al., Astrophysical Journal 207 (1976) 78.ADSCrossRefGoogle Scholar
  20. [19]
    M. Van der Klis and J.M. Bonnet-Bidaud, Astronomy and Astrophysics 95 (1981) L5.ADSGoogle Scholar
  21. [20]
    R.C. Lamb et al., Astrophysical J. 212 (1977) L63.ADSCrossRefGoogle Scholar
  22. [21]
    COS-B Coll., paper presented at the 19th Int. Cosmic Ray Conf., La Jolla (USA), August 1985.Google Scholar
  23. [22]
    Yu.I. Nespor et al., Astrophysics and Space Science 61 (1979) 349.ADSCrossRefGoogle Scholar
  24. [23]
    R.C. Lamb et al., Nature 296 (1982) 543.ADSCrossRefGoogle Scholar
  25. [24]
    S. Danaher et al., Nature 289 (1981) 568.ADSCrossRefGoogle Scholar
  26. [25]
    M. Samorski et al., Astrophysical Journal 268 (1983) L17.ADSCrossRefGoogle Scholar
  27. [26]
    J. Lloyd-Evans et al., Nature 305 (1983) 784.ADSCrossRefGoogle Scholar
  28. [27]
    M.L. Marshak et al., Phys. Rev. Lett. 54 (1985) 2079.ADSCrossRefGoogle Scholar
  29. [28]
    G. Battistoni et al., Phys. Lett. 155B (1985) 465.ADSGoogle Scholar
  30. [29]
    Aachen-Orsay-Palaiseau-Saclay-Wuppertal Collaboration. Paper presented at the 19th Int. Cosmic Ray Conf., La Jolla (USA) (August 1985); G. Chardin, private communication.Google Scholar
  31. [30]
    M. Samorski et al., Proc. 18th Int. Cosmic Ray Conf., Bangalore, India.Google Scholar
  32. [31]
    B. Kayser, Comments on Nucl. Phys. 14 (1985) 69.Google Scholar
  33. [32]
    H. Nishiura, Kyoto University, RIFP-453 (1981)Google Scholar
  34. [32a]
    M. Doi et al., Prog. Theor. Phys. 69 (1983) 602.ADSCrossRefGoogle Scholar
  35. [33]
    E. Bellotti et al., Phys. Lett. 121B (1983) 72.ADSGoogle Scholar
  36. [34]
    T. Kirsten, Proc. 11th Int. Conf. on Neutrino Phys. and Astrophys., Dortmund (1984) p. 145.Google Scholar
  37. [35]
    V. Lubimov et al., Proc. 22th Int. Conf. on High Energy Phys. Leipzig (1984), p. 259.Google Scholar
  38. [35a]
    S. Boris, Phys. Lett. 159B (1985) 217.ADSGoogle Scholar
  39. [36]
    E.F. Tretyakov et al., Izv. Akad. Nauk SSSR Ser. Fiz. 40 (1976) 20.Google Scholar
  40. [37]
    J.W. Petersen, Moriond Workshop on Massive Neutrino in Astrophys. and Particle Physics (1984), p. 261.Google Scholar
  41. [38]
    J.J. Simpson, Phys. Rev. D23 (1981) 649.ADSGoogle Scholar
  42. [39]
    CERN-COURRIER 25 (1985) 182.Google Scholar
  43. [40]
    D. Twerenbold et al., SIN, PR-84-07.Google Scholar
  44. [41]
    J.J. Simpson, Phys. Rev. Lett. 54 (1985) 1891.ADSCrossRefGoogle Scholar
  45. [42]
    T. Altzitzoglou, Phys. Rev. Lett. 55 (1985) 799.ADSCrossRefGoogle Scholar
  46. [43]
    J.F. Cavaignac et al., Phys. Lett. 148B (1984) 387.ADSGoogle Scholar
  47. [44]
    K. Gabathuler et al., Phys. Lett. 138B (1984) 449.ADSGoogle Scholar
  48. [45]
    D.H. Perkins, Ann. Rev. of Nucl. Science 34 (1984) 1.MathSciNetADSCrossRefGoogle Scholar
  49. [46]
    J.M. Secco et al., Phys. Rev. Lett. 54 (1985) 2299.ADSCrossRefGoogle Scholar
  50. [47]
    J.K. Rowley et al., Solar Neutrino and Neut. Astronomy Conference, Homestake (1984) 1.Google Scholar
  51. [48]
    R. Davis et al., Phys. Rev. Lett. 20 (1968) 1205.ADSCrossRefGoogle Scholar
  52. [49]
    J.N. Bahcall et al., Review of Modern Physics 54 (1982) 767ADSCrossRefGoogle Scholar
  53. [49a]
    J.N. Bahcall et al., Astrophysical J. 292 (1985) L79.ADSCrossRefGoogle Scholar
  54. [50]
    E. Schatzman, A. Maeder, Astron. Astrophys. 96 (1981) 1.ADSGoogle Scholar
  55. [51]
    Members of the Collaboration : T. Kirsten (spokesman), W. Hampel, G. Eymann, G. Heusser, J. Kiko, E. Pernicka, B. Povh, M. Schneller, K. Schneider, H. Volk (Heidelberg) -K. Ebert, E. Henrich, R. Schlotz (Karlsruhe) -R.L. Mossbauer (Munchen) -I. Dostrovsky (Rehovot) -M. Cribier, G. Dupont, B. Pichard, J. Rich, M. Spiro, D. Vignaud (Saclay)-G. Berthomieu, E. Schatzman (Nice)-E. Fiorini, E. Bellotti, 0. Cremonesci, C. Liguori, S. Ragazzi, L. Zanotti (Milano)-L. Paoluzi, S. D’Angelo, R. Bernabei, R. Santonico (Roma).Google Scholar
  56. [51a]
    T. Kirsten, “The gallium solar neutrino experiment”, in Proc. of the Resonance Ionization Spectroscopy meeting, Knoxville, Tennessee, April 1984;Google Scholar
  57. [51b]
    W. Hampel, “The gallium solar neutrino detector”, in Solar Neutrinos and neutrino astronomy, Homestake (1984), AIP Conf. Proc. n° 126, p. 162;Google Scholar
  58. [51b]
    D. Vignaud, “The gallium solar neutrino experiment GALLEX”, paper presented at the 5tn Moriond Astrophysics meeting, Les Arcs (1985).Google Scholar
  59. [52]
    J.M. Irvine, Contemp. Physics 24 (1983) 427.ADSCrossRefGoogle Scholar
  60. [53]
    See M. Maurette, Ann. Rev. Nucl. Sc. 26 (1976) 319.ADSCrossRefGoogle Scholar
  61. [54]
    M. Neuilly et al., C. R. Acad. Sci. Paris 275 (1972) 1847.Google Scholar
  62. [55]
    F.J. Dyson, Rev. Mod. Phys. 51 (1979) 447.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  1. 1.Centre d’Etudes Nucléaires de SaclayGif-sur-YvetteFrance

Personalised recommendations