The Study of Sound Backscattering From Microinhomogeneities in Sea Water

  • V. A. Akulichev
  • V. A. Bulanov


The authors show that the use of a parametric source to measure backscattering from microinhomogeneities offers several advantages. By analyzing backscattering results obtained at a variety of signal frequencies and pulse lengths, it is possible to obtain the size distribution of both resonant and non resonant scatterers separately. - Ed.


Acoustic Signal Pulse Length Vapour Bubble Acoustic Pulse Size Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ishimary, “Wave Propagation and Scattering in Random Media,” Academic Press, New York (1978).Google Scholar
  2. 2.
    V. A. Akulichev, V. A. Bulanov, S. A. Klenin and V. D. Kiselyov, The use of parametric sound sources in the study of sound scattering in “Proc. 10th Intern. Symposium on Nonlinear Acoustics,” Kobe (1984).Google Scholar
  3. 3.
    L. R. Gavrilov, On the gas bubble size distribution in sea water, Akust. Zhurnal (Russian), 15: 25 (1969).Google Scholar
  4. 4.
    H. Medwin, In situ acoustic measurements of bubble populations in coastal ocean water, J. Geophvs. Res., 75: 599 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    P. A. Colobaev, The study of concentration and statistical size distribution of wind borne bubbles in the near surface ocean layer, Oceanologiva (Russian), 15: 1013 (1975).Google Scholar
  6. 6.
    B. D. Johnson and R. C. Cook, Bubble populations and spectra in coastal water: photographic approach, J. Geophvs. Res.., 84: 3761 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    J. Dalen and A. Løvik, The influence of wind-induced bubbles on echo integration, J. Acoust. Soc. Am., 69: 1653 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Weitendorf, Complementing discussion contribution to the papers of H. Medwin, P. Schippers and A. Løvik, in “Cavitation and Inhomogeneities in Underwater Acoustics,” W. Lauterborn, ed., Springer-Verlag, Berlin (1980).Google Scholar
  9. 9.
    B. M. Sandler, D. A. Selivanovsky and A. Yu. Sokolov, The measurement of gas bubble concentrations in the near-surface layer of the sea, Dokladv AN (Russian), 260: 1474 (1981).Google Scholar
  10. 10.
    L. A. Ostrovsky and A. M. Sutin, Nonlinear acoustical methods for the diagnostics of gas bubbles in liquid, in “Ultrasonic Diagnostics,” Inst. Appl. Phys., Gorkii (1983).Google Scholar
  11. 11.
    D. Messino, D. Sette and F. Wanderling, Statistical approach to ultrasonic cavitation, J. Acoust. Soc. Am., 35: 1575 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    D. C. Blanchard and A. H. Woodcock, Bubble formation and modification in the sea and its meteorological significance, Tellus. 9: 145 (1957).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • V. A. Akulichev
    • 1
  • V. A. Bulanov
    • 1
  1. 1.Far East Science CentrePacific Oceanological InstituteVladivostokUSSR

Personalised recommendations