Skip to main content

The T ß , T g , and T ll “Transitions”: Are These the Manifestation of a Unique Relaxation Process?

  • Chapter

Abstract

It was suggested in an earlier communication1 that the T ll relaxational process started to exhibit its thermal existence in the pre-T g (T<T g ) temperature region, and that this relaxation peak, usually designated at T ß 2 was not only the precursor of the T g peak, but the true onset of the T ll transition. We have recently presented a new theory of nonequilibrium kinetics3 which can be applied to the description of the weak force field (van der Waals type) of interaction between the mers belonging to the macromolecules, not necessarily located on the same single chains. The new theory allows a network structure for the total free energy due to the thermal and mechanical past history. The network is called EKNET, the Energetic Kinetic Network, to specify the energetic and kinetic constraints responsible for its very existence. The T ll and T ß relaxations naturally arise from the network structure of the free energy and from the nonequilibrium statistics which govern its instability over temperature and time. T ll is apparently the temperature for the collapse of the EKNET structure of the weak force field.3 T ß is the low temperature manifestation of the existence of the EKNET. In simplistic terms, the reason for T ll to show up at T ß , i.e., at a temperature below T g , although it is generated by the T g kinetics, is that its activation energy is much lower than that of T g .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Ibar, Polym. Commun. 24, 331–335 (1983).

    CAS  Google Scholar 

  2. V.A. Bershtein, V.M. Egorov, A.F. Podolsky, and V.A. Stepanov, J. Polym. Sci. Polym. Lett. Ed. 23, 371–377 (1985).

    Article  CAS  Google Scholar 

  3. J.P. Ibar, “Proceedings of the International Conference on the Theory of the Structure of Noncrystalline Solids,” D. Adler and J. Bicerana, Eds. North-Holland, Amsterdam, J. Noncryst. Solids ,75, 215 (1985).

    Google Scholar 

  4. M. Goldstein, in “Amorphous Materials,” R.W. Douglas and B. Ellis, Eds. Wiley Interscience, Las Vegas, 1972, pp. 23 ff.

    Google Scholar 

  5. R.F. Boyer, Colloid Polym. Sci. 258, 760–767 (1980).

    Article  CAS  Google Scholar 

  6. V.G. Baranov and S. Frenkel, J. Polym. Sci. Polym. Symp. 61, 351–357 (1977).

    Article  CAS  Google Scholar 

  7. A. Bernes, These 3eme cycle, Physique des Solides, Universite Paul Sabatier, Toulouse, France.

    Google Scholar 

  8. A. Bernes, R.F. Boyer, D. Chatain, C. Lacabanne, and J.P. Ibar, contribution in this volume.

    Google Scholar 

  9. J.P. Ibar, ACS Polym. Mater. Sci. Eng. Prepr. 52, 64–72 (1985).

    CAS  Google Scholar 

  10. A. Quach, Ph.D. Thesis, Case Western Reserve University, Clevland, Ohio, 1971.

    Google Scholar 

  11. R.F. Boyer, Macromolecules ,14, 376–385 (1981). See Table I.

    Article  CAS  Google Scholar 

  12. R.F. Boyer and J.K. Gillham, ACS Polym. Prepr. 18(1), 623–628 (1977).

    Google Scholar 

  13. B. Maxwell and K.S. Cook, J. Polym. Sci. Polym Symp. 72, 343–350 (1985)

    Article  CAS  Google Scholar 

  14. N.G. McCrum, B.E. Read, and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids,” Wiley, New York, 1967, p. 414.

    Google Scholar 

  15. J.P. Ibar, ACS Polym. Prepr. 24(2), 449–450 (1983).

    CAS  Google Scholar 

  16. J.P. Ibar, Polym.-Plast. Technol. Eng. 17(1), 11–44 (1981).

    Article  CAS  Google Scholar 

  17. Rheomolding® is a registered trademark of Solomat S.A. Worldwide patent rights are the property of Solomat S.A.

    Google Scholar 

  18. A. Bernes, D. Chatain, C. Lacabanne, and J.P. Ibar, Jounees d’Etudes sur l’Electrostatique, Ecole Superieure d’Electricite’, Paris, France, October 1984.

    Google Scholar 

  19. J.P. Ibar, J. Macromol Sci. Phys. B16, 355–375 (1979).

    CAS  Google Scholar 

  20. J.P. Ibar, J. Macromol Sci. Phys. B16, 551–579 (1979).

    CAS  Google Scholar 

  21. J.P. Ibar, J. Macromol. Sci. Phys. B23, 29–63 (1984).

    CAS  Google Scholar 

  22. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.R. Ramos, J. Polym. Sci. Polym. Phys. Ed ,17, 1097–1162 (1979).

    Article  CAS  Google Scholar 

  23. J.P. Ibar, J. Macromol. Sci. Phys. B21(4), 481–512 (1982).

    CAS  Google Scholar 

  24. A.J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1963).

    Article  Google Scholar 

  25. R.E. Robertson, Ann. N.Y. Acad. Sci. 371, 21–37 (1981).

    CAS  Google Scholar 

  26. M.S. AH and R.P. Sheldon, J. Appl. Polym. Sci. 14, 2619–2628 (1970).

    Article  Google Scholar 

  27. K. Neki and P.H. Geil, J. Macromol. Sci. Phys. B8(l-8), 295–341 (1973).

    Google Scholar 

  28. J.P. Ibar, Ph.D. Thesis, Massachusetts Institute of Technology, June 1975.

    Google Scholar 

  29. J.R. Saffell, Ph.D. Thesis, University of Cambridge, United Kingdom, 1979.

    Google Scholar 

  30. S.E.B. Petrie, J. Polym. Sci. Part A-2 ,10, 1255–1272 (1972).

    Article  CAS  Google Scholar 

  31. M.J. Richardson and N.G. Savill, Polymer ,16, 753–757 (1985).

    Article  Google Scholar 

  32. W.M. Prest and F.J. Roberts, Ann. N.Y. Acad. Sci. 371, 67–86 (1981).

    CAS  Google Scholar 

  33. J.P. Ibar, MACROIUPAC 81, Proceedings ,2, 1204 (1981).

    Google Scholar 

  34. R.F. Boyer, in “Polymer Yearbook,” Vol. 2 ,R.A. Pethrick, Ed. Harwood Academic Publishers, New York, 1985, pp. 233–343.

    Google Scholar 

  35. M.V. Volkenstein, Dokl. Adad. Nauk USSR ,78, 879 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ibar, J.P. (1987). The T ß , T g , and T ll “Transitions”: Are These the Manifestation of a Unique Relaxation Process?. In: Keinath, S.E., Miller, R.L., Rieke, J.K. (eds) Order in the Amorphous “State” of Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1867-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1867-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9041-4

  • Online ISBN: 978-1-4613-1867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics