Skip to main content

Target Site Insensitivity in Insect-Plant Interactions

  • Chapter
Molecular Aspects of Insect-Plant Associations

Abstract

By acting as a selective source of mortality in insect populations, insecticides, both natural and man-made, have wrought extraordinary changes in the genetic composition and physiology of insects. Among these changes are several fundamentally different resistance mechanisms. One of the less well understood forms of resistance is target site insensitivity (TSI), defined as the failure of a toxicant to bind to the target due to alteration in the structure or accessibility of that target site (Brooks 1976). Studies of TSI have been severely hampered by the fact that, in order to understand TSI as a resistance mechanism, it is necessary first to know what the target site and mode of action are. This is decidedly not the case for the majority of plant allelochemicals; it is, however, true for a few synthetic organic insecticides, and the phenomenon of target site insensitivity was first discovered in connection with chemical control programs that ceased working.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anstee, J. and K. Bowler, 1976. Ouabain-sensitivity of insect epithelial tissues, Comp. Biochem. Physiol., 62A:763–769.

    Google Scholar 

  • Applebaum, S. W. and Y. Birk, 1979. Saponins, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 539–566, Academic Press, New York.

    Google Scholar 

  • Barbosa, P. and J. Saunders, 1985. Plant allelochemicals: linkages between herbivores and their natural enemies. Rec. Adv. Phytochem., 19:107–137.

    CAS  Google Scholar 

  • Beesley, S., S. G. Compton, and D. Jones, 1985. Rhodanese in insects, J. Chem. Ecol., 11:45–50.

    Article  CAS  Google Scholar 

  • Berenbaum, M., 1985. Brementown revisited: interactions among allelochemicals in plants, Rec. Adv. Phytochem., 19:139–169.

    CAS  Google Scholar 

  • Berenbaum, M. and J. J. Neal, 1985. Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant, J. Chem. Ecol., 11:1349–1358.

    Article  CAS  Google Scholar 

  • Bowers, W. S., 1983. Phytochemical action on insect morphogenesis, reproduction and behavior, in: “Natural Products for Innovative Pest Management”, D. Whitehead and W. S. Bowers, eds., pp. 313–321, Pergamon Press, New York.

    Google Scholar 

  • Brattsten, L. B., 1979. Biochemical defense mechanism in herbivores against plant allelochemicals, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, pp. 199–271, Academic Press, New York.

    Google Scholar 

  • Brattsten, L. B., 1984. Presentation at the 17th International Congress of Entomology, Hamburg, Germany. August 1984.

    Google Scholar 

  • Brooks, G. T., 1976. Penetration and distribution of insecticides, in: “Insecticide Biochemistry and Physiology”, C. F. Wilkinson, ed., pp. 3–60, Plenum Publ. Corp., New York.

    Google Scholar 

  • Brower, L. P., P. McEvoy, K. Williamson, and M. Flannery, 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America, Science, 177:426–429.

    Article  PubMed  CAS  Google Scholar 

  • Brower, L. P., J. Seiber, C. Nelson, S. Lynch and P. Tuskes, 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus, reared on the milkweed, Asclepias eriocarpa in California, J. Chem. Ecol., 8:579–633.

    Article  CAS  Google Scholar 

  • Bull, D. L., G. W. Ivie, R. Beier, N. Prior and E. Oertli, 1984. Fate of photosensitizing furanocoumarins in tolerant and sensitive insects, J. Chem. Ecol., 10:893–911.

    Article  CAS  Google Scholar 

  • Busvine, J. R., 1951. Mechanism of resistance to insecticide in houseflies, Nature, 168:193–195.

    Article  PubMed  CAS  Google Scholar 

  • Casida, J. E., 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists, J. Agr. Food Chem., 18:753–760.

    Article  CAS  Google Scholar 

  • Chang, C. P. and F. W. Plapp, 1983. DDT and pyrethroids: receptor binding in relation to knockdown resistance (kdr) in the house fly, Pestic. Biochem. Physiol., 20:86–91.

    CAS  Google Scholar 

  • Chang, C. P. and F. W. Plapp, 1983. DDT and pyrethroids: receptor binding and mode of action in the house fly, Pestic. Biochem. Physiol., 20:76–85.

    CAS  Google Scholar 

  • Changeux, J. P., A. Devillers-Thiery, and P. Chemouilli, 1984. Acetylcholine receptor: an allosteric protein, Science, 225:1335–1345.

    Article  PubMed  CAS  Google Scholar 

  • Chialiang, C. and A. L. Devonshire, 1982. Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrethroid resistance (kdr) in house flies (Musca domestica), Pestic. Sci., 13:156–160.

    Article  CAS  Google Scholar 

  • Conn, E. E., 1979. Cyanide and cyanogenic glycosides, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 387–412, Academic Press, New York.

    Google Scholar 

  • Crosby, D. G. and M. Jacobson, 1971. “Naturally Occurring Insecticides”, Marcel Dekker Press, New York.

    Google Scholar 

  • Crow, J. F., 1952. Some genetic aspects of selection for resistance, in: “Conference on Insecticide Resistance and Insect Physiology”, Publ. No. 219, pp. 72–78, National Academy of Sciences National Research Council, Washington.

    Google Scholar 

  • Decker, G. C. and W. Bruce, 1952. Illinois Natural History Survey Research on House fly resistance to chemicals, in: “Conference on Insecticide Resistance and Insect Physiology”, Publ. No. 219, pp. 25–33, National Academy of Sciences National Research Council, Washington.

    Google Scholar 

  • Dimock, M. B., G. Kennedy, and W. Williams, 1982. Toxicity studies of analogs of 2-tridecanone, a naturally occurring toxicant from a wild tomato, J. Chem. Ecol., 8:837–842.

    Article  CAS  Google Scholar 

  • Devonshire, A. L. and G. Moore, 1984. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica), Pestic. Biochem. Physiol., 21:336–340.

    Article  CAS  Google Scholar 

  • Duffey, S. S., 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol., 25:447–477.

    Article  CAS  Google Scholar 

  • Fairbairn, J. W., 1971. The alkaloids of hemlock (Conium maculatum L. or Conium maculatum L.: The odd man out), in_: “The Biology and Chemistry of the Umbelliferae”, V. Heywood, ed., Bot. J. Linn. Soc. 64 Suppl. 1:361–368.

    Google Scholar 

  • Freeland, W. and D. H. Janzen, 1974. Strategies in herbivory by mammals: the role of plant secondary compounds, Am. Nat., 108:269–289.

    Article  CAS  Google Scholar 

  • Gammon, W., 1980. Pyrethroid resistance in a strain of Spodoptera littoralis is correlated with decreased sensitivity of the CNS in vitro, Pestic. Biochem. Physiol., 13:53–57.

    Article  CAS  Google Scholar 

  • Georghiou, G. P., 1972. The evolution of resistance to pesticides, Annu. Rev. Ecol. Syst., 3:133–168.

    Article  CAS  Google Scholar 

  • Georghiou, G. P., 1983. Management of resistance in arthropods, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 769–792, Plenum Publ. Corp., New York.

    Google Scholar 

  • Georghiou, G. P. and R. Mellon, 1983. Pesticide resistance in time and space, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 1–46, Plenum Publ. Corp., New York.

    Google Scholar 

  • Georghiou, G. P. and T. Saito, eds., 1983. “Pest Resistance to Pesticides”, Plenum Publ. Corp., New York.

    Google Scholar 

  • Georghiou, G. P. and C. E. Taylor, 1976. Pesticide resistance as an evolutionary phenomenon, Proc. XV Int. Cong. Ent. 1976. 759–785.

    Google Scholar 

  • Granger, M. and C. Helene, 1983. Photoaddition of 8-methoxypsoralen to E. coli DNA polymerase. I. Role of psoralen photoadducts in the photosensitized alterations of pol I enzymatic activities, Photochem. Photobiol., 38:563–568.

    Article  PubMed  CAS  Google Scholar 

  • Hall, F. R., R. Hollingsworth and D. Shankland, 1971. Cyanide tolerance in millipedes: the biochemical basis, Comp. Biochem. Physiol., 38B:723–737.

    Google Scholar 

  • Hama, H., 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 299–332, Plenum Publ. Corp., New York.

    Google Scholar 

  • Ivie, G. W., D. Bull, R. Beier, N. Pryor, and E. Oertli, 1983. Metabolic detoxification: mechanism of insect resistance to plant psoralens, Science, 221:374–376.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, F. R., S. D. Wilson, and L. M. Hall, 1984. Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster, Nature, 308:189–191.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. and D. Crosby, 1971. “Naturally Occurring Insecticides”, Marcel Dekker, New York, 585 pp.

    Google Scholar 

  • Janzen, D. H., 1980. When is it coevolution? Evolution, 34:611–612.

    Article  Google Scholar 

  • Joshi, P. C. and M. Pathak, 1983. Production of singlet oxygen and superoxide radicals by psoralens, Biochem. Biophys. Res. Commun., 112:638–646.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, J. and G. Chan, 1983. The photoovicidal activity of plant components towards Drosophila melanogaster. Experientia, 39:402–403.

    Article  CAS  Google Scholar 

  • Levinson, H. Z., K. E. Kaissling and A. R. Levinson, 1973. Olfaction and cyanide sensitivity in the six spot burnet moth Zygaena filipendulae and the silk moth Bombyx mori, J. Comp. Physiol., 86:209–214.

    Article  CAS  Google Scholar 

  • Long, K. Y. and L. B. Brattsten, 1982. Is rhodanese important in the detoxification of cyanide in southern armyworm (Spodoptera eridania Cramer) larvae? Insect Biochem., 12:367–375.

    Article  CAS  Google Scholar 

  • Lund, A. E., 1985. Insecticides: effects on the nervous system, in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Vol. 12, pp. 9–56, Pergamon Press, New York.

    Google Scholar 

  • Mabry, T. and J. Gill, 1979. Sesquiterpene lactones and other terpenoids, in: “Herbivores, Their Interaction with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., pp. 501–537, Academic Press, New York.

    Google Scholar 

  • Marty, M. and R. I. Krieger, 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus, J. Chem. Ecol., 10:945–956.

    Article  CAS  Google Scholar 

  • Matsumura, F., 1976. “Toxicology of Insecticides”, Plenum Publ. Corp., New York, 503 pp.

    Google Scholar 

  • Matsumura, F., 1983. Penetration, binding and target insensitivity as causes of resistance to chlorinated hydrocarbon insecticides, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.

    Google Scholar 

  • Meredith, J., L. Moore, and G. G. E. Scudder, 1984. The excretion of ouabain by the Malpighian tubules of O. fasciatus. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15):R705–R715.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L. and R. B. March, 1950. Properties of acetylcholine esterases from the bee, the fly, and the mouse and their relation to insecticide action, J. Econ. Entomol., 43:670–677.

    CAS  Google Scholar 

  • Miller, T. A., J. Kennedy and C. Collins, 1979. CNS insensitivity to pyrethroids in the resistant kdr strain of house flies, Pestic. Biochem. Physiol., 12:224–230.

    Article  CAS  Google Scholar 

  • Miller, T. A., V. L. Salgado and S. Irving, 1983. The kdr factor in pyrethroid resistance, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.

    Google Scholar 

  • Moore, L. V. and G. G. E. Scudder, 1986. Ouabain resistant Na, K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J. Insect Physiol., 32:27–33.

    Article  CAS  Google Scholar 

  • Morris, C. E., 1984. Electrophysiological effects of cholinergic agents in the central nervous system of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta), J. Exp. Zool., 229:361–374.

    Article  CAS  Google Scholar 

  • Murray, R. D. H., J. Mendez and S. A. Brown, 1982. “The Natural Coumarins”, J. Wiley and Sons, Ltd., Chichester.

    Google Scholar 

  • Nahrstedt, A. and R. H. Daves, 1981. Occurrence of the cyanoglucosides, linamarin and lotaustralin, in Acrea and Heliconius butterflies, Comp. Biochem. Physiol., 68(B):575–578.

    Google Scholar 

  • Narahashi, T., 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, In: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.

    Google Scholar 

  • Nelson, C. J., J. Seiber, and L. P. Brower, 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense, J. Chem. Ecol., 7:981–1010.

    Article  CAS  Google Scholar 

  • Osborne, M. P. and A. Smallcombe, 1983. Site of action of pyrethroid insecticides in neuronal membranes as revealed by the kdr resistance factor. in: “Mode of Action, Metabolism and Toxicology”, S. Matsunaka, D. Hutson and S. Murphy, eds., Vol. 3 of Pesticide Chemistry: Human Welfare and the Environment, pp. 103–107, Pergamon Press, New York.

    Google Scholar 

  • Pascoe, D., 1983. “Toxicology”, E. Arnold and Co., London.

    Google Scholar 

  • Pearlman, D. A., S. R. Holbrook, D. Pirkle and S. H. Kim, 1985. Molecular models for DNA damage by photoreaction. Science, 227:1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Plapp, F. W., 1974. Biochemical genetics of insecticide resistance, Annu. Rev. Entomol., 21:179–197.

    Article  Google Scholar 

  • Plapp, F. W. and T. C. Wang, 1983. Genetic origins of insecticide resistance, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.

    Google Scholar 

  • Poppe, W. and L. Grossweiner, 1975. Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism, Photochem. Photobiol., 22:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Proksch, P., M. Proksch, G. H. N. Towers, and E. Rodriguez, 1983. Phototoxic and insecticidal activities of chromenes and benzofurans from Encelia, J. Nat. Prod., 46:331–334.

    Article  CAS  Google Scholar 

  • Quay, G. H., 1916. Are scales becoming resistant to fumigation? Cal. Univ. J. Agr., 3:333–334, 358.

    Google Scholar 

  • Rosenthal, G. A. and D. L. Dahlman, 1975. Non-protein amino acid-insect interactions II. Effects of canaline on growth and development of the tobacco hornworm, Manduca sexta L. (Sphingidae), Comp. Biochem. Physiol., 52A:105–108.

    Article  Google Scholar 

  • Rosenthal, G. A., D. L. Dahlman, and D. H. Janzen, 1976. A novel means for dealing with L-canavanine, a toxic metabolite, Science, 192:256–258.

    Article  PubMed  CAS  Google Scholar 

  • Scudder, G. G. E., L. Moore and M. B. Isman, 1986. Sequestration of cardenolides in Oncopeltus fasciatus: morphological and physiological adaptations, J. Chem. Ecol., 13: in press.

    Google Scholar 

  • Scudder, G. E. and J. Meredith, 1982. The permeability of the midgut of three insects to glycosides, J. Insect Physiol., 28:689–694.

    Article  CAS  Google Scholar 

  • Self, L. S., F. Guthrie and E. Hodgson, 1964. Adaptation of tobacco hornworms to the ingestion of nicotine, J. Insect Physiol., 12:224–230.

    Google Scholar 

  • Smissaert, H. R., 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate, Science, 143:129–131.

    Article  PubMed  CAS  Google Scholar 

  • Soderlund, D. M., S. M. Guiasuddin, and D. W. Helmuth, 1983. Receptorlike stereospecific binding of a pyrethroid insecticide to mouse brain membranes, Life Sci., 33:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, C. F., 1984. Biophysical studies of ion channels, Science, 225:1346–1350.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, G. L. and A. M. Jungreis, 1977. Insensitivty of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides, J. Insect Physiol., 23:585–589.

    Article  CAS  Google Scholar 

  • Wilkinson, C. F., ed., 1976. “Insecticide Biochemistry and Physiology”, Plenum Publ. Corp., New York.

    Google Scholar 

  • Windholz, M., S. Budavari, R. Blumetti, and E. Otterbein, 1983. “The Merck Index”, Merck and Co., Inc. Rahway.

    Google Scholar 

  • Wray, Y., R. H. Davis and A. Nahrstedt. 1983. Biosynthesis of cyanogenic glycosides in butterflies and moths: Incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera), Z. Naturforsch., Sect. C Biosci., 38:583–588.

    Google Scholar 

  • Yamamoto, I., Y. Takahashi and N. Kyomura, 1983. Suppression of altered acetylcholinesterase of the green rice leafhopper by N-propyl and N-methyl carbamate combinations, in: “Pest Resistance to Pesticides”, G. P. Georghiou and T. Saito, eds., pp. 376–386, Plenum Publ. Corp., New York.

    Google Scholar 

  • Yust, H. R., and F. Shelden, 1952. A study of the physiology of resistance to hydrocyanic acid in the California red scale, Ann. Ent. Soc. Amer., 45:220–228.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Berenbaum, M.R. (1986). Target Site Insensitivity in Insect-Plant Interactions. In: Brattsten, L.B., Ahmad, S. (eds) Molecular Aspects of Insect-Plant Associations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1865-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1865-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9040-7

  • Online ISBN: 978-1-4613-1865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics