The Perception of Plant Allelochemicals That Inhibit Feeding

  • James L. Frazier


Plant-feeding insects have evolved an array of subtle discrimination capabilities involving their chemical senses. During the last 25 years an extensive list of plant chemicals that are detected by the contact and olfactory chemical senses of insects has accumulated. This list together with some 25–30 species of insects for which we have electrophysiological data on their chemical senses form the basis for our understanding of the chemical control of feeding. Many additional experiments at the behavioral level leave little doubt that the feeding of insects is regulated by some “umwelt” of plant chemicals, but the unique messages offered by host and nonhost plants have yet to be discovered (Dethier and Crnjar, 1982). The dynamic aspects of plant chemistry, as well as the many plant surface compounds that may have behavioral significance add to the complexity of this task (Fobes et al., 1985; Berenbaum, 1985; Gibson and Pickett, 1983; Woodhead, 1983). In addition, several types of physiological feedbacks that are important in regulating feeding have many details yet to be resolved (Shirahashi and Yano, 1984; Bernays and Simpson, 1982). These limitations in our understanding of the regulation of insect feeding come sharply into focus when we attempt to understand the importance of plant allelochemicals that inhibit feeding.


Colorado Potato Beetle Taste Cell Aristolochic Acid Phytophagous Insect Insect Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adityachaudhury, N., A. Bhattacharyya, A. Chowdhury and S. Pal, 1985. Chemical constituents of plants exhibiting insecticidal antifeeding and insect growth regulating activities, J. Sci. Ind. Res., 44:85–101.Google Scholar
  2. Altner, H., and L. Prillinger, 1980. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance, Intern. Rev. Cytol., 67:69–139.Google Scholar
  3. Ascher, K. R. S., N. E. Nemny, K. I. Eliyahu, A. Abraham and E. Glatter, 1980. Insect antifeedant properties of withanolides and related steriods from Solanaceae, Experientia, 36:998–999.Google Scholar
  4. Antonious, A. G. and T. Saito, 1983. Mode of action of antifeeding compounds in the larvae of the tobacco cutworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae) III. Sensory responses of the larval chemoreceptors to chlordimeform and clerodin, Appl. Entomol. Zool., 1:40–49.Google Scholar
  5. Barnes, D. M., 1986. Lessons from snails and other models, Science, 231:1246–1249.PubMedGoogle Scholar
  6. Bell, R. A., 1984. Role of frontal ganglion in lepidopterous insects, in: “Insect Neurochemistry and Neurophysiology”, A. Borkovec and T. Kelly, eds., pp 321–324, Plenum Publ. Corp., New York.Google Scholar
  7. Bentley, M. D., D. E. Leonard, W. F. Stoddard and L. H. Zalkow, 1984. Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm, Christoneura fumiferana (Lepidoptera: Tortricidae), Ann. Entomol. Soc. Amer., 77:393–397.Google Scholar
  8. Berenbaum, M., 1985. Brementown revisited: interactions among allelochemicals in plants, Rec. Adv. Phytochem., 19:139–169.Google Scholar
  9. Bernays, E. A., 1985. Regulation of feeding behavior in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Vol. 6, pp. 1–32, Pergamon Press, New York.Google Scholar
  10. Bernays, E. A. and S. J. Simpson, 1982. Control of food intake, Adv. Insect Physiol., 16:59–118.Google Scholar
  11. Bernays, E. A. and R. R. Wrubel, 1985. Learning by grasshoppers: association of color/light intensity with food, Physiol. Entomol., 10:359–369.Google Scholar
  12. Blades, D. and B. K. Mitchell, 1986. Effects of alkaloids on feeding by Phormia regina, Entmol. Exp. Appl., in press.Google Scholar
  13. Blaney, W. M., 1975. Behavioural and electrophysiological studies of taste discrimination by the maxillary palps of larvae of Locusta migratoria (L.), J. Exp. Biol., 62:555–569.PubMedGoogle Scholar
  14. Blaney, W. M. and A. M. Duckett, 1975. The significance of palpation by the maxillary palps of Locusta migratoria (L.): an electrophysiological and behavioral study, J. Exp. Biol., 63:701–712.PubMedGoogle Scholar
  15. Blaney, W. M., M. S. J. Simmonds, S. V. Evans and L. E. Fellows, 1984. The role of the secondary plant compound 2,5-dihydroxmethyl-3,4-dihydroxy pyrrolidone as a feeding inhibitor for insects, Entomol. Exp. Appl., 36:209–216.Google Scholar
  16. Blom, F., 1978. Sensory activity and food intake: a study of inputoutput relationships in two phytophagous insects, Netherl. J. Zool., 28:277–340.Google Scholar
  17. Boudreau, J. C., L. Sivakumar, L. T. Do, T. D. White, J. Oravec and N. K. Hoang, 1985. Neurophysiology of geniculate ganglion (facial nerve) taste systems: species comparisons, Chem. Senses, 10:89–12.Google Scholar
  18. Bowdan, E., 1984. Electrophysiological responses of tarsal contact chemoreceptors of the apple maggot fly Rhagoletis pomonella to salt, sucrose and oviposition deterrent, J. Comp. Physiol., 154:143–152.Google Scholar
  19. Broughton, H. B., S. V. Ley, A. M. Z. Slawin, D. J. Williams and E. D. Morgan, 1986. X-ray crystallographic structure determination of detigloyldihydroazadirachtin and reassignment of the structure of the limonoid insect antifeedant azadirachtin, J. Chem. Soc. Chem. Commun., No. 1, pp. 46–47.Google Scholar
  20. Chang, C. C. and K. Nakanishi, 1983. Specionin, an iridoid insect antifeedant from Catalpa speciosa, J. Chem. Soc. Commun., 956:605–606.Google Scholar
  21. Chapman, R. F., 1974. The chemical inhibition of feeding by phytophagous insects: a review, Bull. Entomol. Res., 64:339–363.Google Scholar
  22. Chapman, R. F., 1982. Chemoreception: the significance of receptor numbers, Adv. Insect Physiol., 16:247–35.Google Scholar
  23. Chuo, F. Y., K. Hostettman, I. Kubo and K. Nakanishi, 1977. Isolation of an insect antifeedant N-methyl flindersine and several benzo[e] phenanthridine alkaloids from east African plants: a comment on chelerythrine, Heterocycles, 7:969–977.Google Scholar
  24. Clark, J. V., 1981. Feeding deterrent receptors in the last instar African armyworm Spodoptera exempta: a study using salicin and caffein, Entomol. Exp. Appl., 29:189–197.Google Scholar
  25. Davis, E. E., 1985. Insect repellents: concepts of their mode of action relative to potential sensory mechanisms in mosquitoes (Diptera: Culicidae), J. Med. Entomol., 22:237–243.PubMedGoogle Scholar
  26. DeBoer, G., V. G. Dethier and L. M. Schoonhoven, 1977. Chemoreceptors in the preoral cavity of the tobacco hornworm, Manduca sexta, and their possible function in feeding behavior, Entomol. Exp. Appl., 22:287–298.Google Scholar
  27. Dethier, V. G., 1976. “The Hungry Fly”, Harvard University Press, Cambridge.Google Scholar
  28. Dethier, V. G., 1977. Gustatory sensing of complex stimuli by insects, in: “Olfaction and Taste VI”, I. LeMagnon and P. MacLeod, eds, pp. 323–332, Information Retrieval Press, London.Google Scholar
  29. Dethier, V. G., 1980. Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents, Amer. Nat., 115:45–66.Google Scholar
  30. Dethier,V. G., 1982. Mechanism of host plant recognition, Entomol. Exp. Appl., 31:49–56.Google Scholar
  31. Dethier, V. G., Crnjar R. M., 1982. Candidate codes in the gustatory system of caterpillars, J. Gen. Physiol., 79:549–569.PubMedGoogle Scholar
  32. Dethier, V. G. and F. E. Hanson, 1968. Electrophysiological responses of the chemoreceptors of the blowfly to sodium salts of fatty acids, Proc. Nat. Acad. Sci., 60: 1296–1303.PubMedGoogle Scholar
  33. Dethier, V. G., L. Barton Brown and C. N. Smith, 1960. The designation of chemicals in terms of the responses they elicit from insects, J. Econ. Entomol., 53:134–136.Google Scholar
  34. Devitt, B. and J. J. B. Smith, 1985. Action of mouthparts during feeding in the dark-sided cutworm, Euxoa messoria, Can. Entomol., 117:343–349.Google Scholar
  35. Doskotch, R. W., H. Y. Chen, T. M. O’Dell and L. Girard, 1980. Nerolidol: an antifeeding sesquiterpene alcohol for gypsy moth larvae from Melaleuca leucadendron, Chem. Ecol., 6:845–851.Google Scholar
  36. Dryer, D. L. and K. C. Jones, 1981. Feeding deterrency of flavanoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat, Phytochem., 20:2489–2493.Google Scholar
  37. Fishman, M. C. and I. Spector, 1981. Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells, Proceed. Nat. Acad. Sci., USA, 78:245–249.Google Scholar
  38. Fobes, J. F., J. B. Mudel and M. P. F. Marsden, 1985. Epicuticular lipid accumulation on the leaves of Lycopersicon penelli (Corr.) D’Arcy and Lycopersicon esculentum Mill, Plant Physiol., 77:567–570.PubMedGoogle Scholar
  39. Frazier, J. L., 1986. Chemosensory regulation of mandibular motor output in the tobacco hornworm, Manduca sexta, submitted for publication.Google Scholar
  40. Frazier, D. T., C. Sevik and T. Narahashi, 1973. Nicotine: effect on nerve membrane conductances, Europ. J. Pharmacol., 22:217–220.Google Scholar
  41. Geuskens, R. B. M., J. M. Luteijin and L. M. Schoonhoven, 1983. Antifeedant activity of some ajugarin derivatives in three lepidopterous species, Experientia, 39:403–404.Google Scholar
  42. Gibson, R. W. and J. A. Pickett, 1983. Wild potato repels aphids by release of aphid alarm pheromone, Nature, 302:600–609.Google Scholar
  43. Gilbert, B. L., J. E. Baker and D. M. Norris, 1967. Juglone (5-hydroxy-1,4-napthoquinone) from Carya ovata, a deterrent to feeding by Scolytus multistriatus, J. Insect. Physiol., 13:1453–1459.Google Scholar
  44. Hall, J. C. and R. J. Greenspan, 1979. Genetic analysis of Drosophila neurobiology, Annu. Rev. Genet., 13:127–195.PubMedGoogle Scholar
  45. Hansen, K. and H. Wieczoreck, 1981. Biochemical aspects of sugar reception in insects, in: “Biochemistry of Taste and Olfaction”, R. H. Cagan and M. E. Kare, eds., pp. 139–162, Academic Press, New York.Google Scholar
  46. Hanson, F. E. 1983. The behavioral and neurophysiological basis of food plant selection by lepidopterous larvae, in: “Herbivorous Insects”, S. Ahmad, ed., pp 3–23, Academic Press, New York.Google Scholar
  47. Haskell, P. T. and L. M. Schoonhoven, 1969. The function of certain mouthpart receptors in relation to feeding in Schistocerca gregaria and Locusta migratoria migratorioides, Entomol. Exp. Appl., 12:423–440.Google Scholar
  48. Hatfield, L. D., J. Ferrera, and J. L. Frazier, 1983. Host selection and feeding behavior by the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), Ann. Entomol. Soc. Am., 76:688–691.Google Scholar
  49. Hille, B., 1984. “Ionic Channels of Excitable Membranes”, Sinauer Assoc., Sunderland.Google Scholar
  50. Hirao, T., K. Yamaoka and N. Arai, 1976. Studies on mechanism of feeding in the silkworm, Bombyx mori L. II. Control of mandibular biting movement by olfactory information through maxillary sensilla basiconica, Bull. Sericul. Exp. Sta., 26:385–410.Google Scholar
  51. Hodgson, E. S., J. Y. Lettvin and K. D. Roeder, 1955. Physiology of a primary chemoreceptor unit, Science, 122:417–418.PubMedGoogle Scholar
  52. Hosozawa, S., N. Kato, K. Munakata and Y. L. Chen, 1974. Antifeeding active substance for insect, Agr. Biol. Chem., 38:1045–1048.Google Scholar
  53. Huber, F., 1984. Insect neuroethology: approaches to the study of behavior and the underlying neural mechanisms, in: “Animal behavior”, K. Aoki, S. Ishii and M. Morita eds., pp. 3–185, Japan Scientific Societies Press, Tokyo.Google Scholar
  54. Ishikawa, S., 1966. Electrical response and function of a bitter substance receptor associated with the maxillary sensilla of the larva of the silkworm, Bombyx mori, J. Cell. Physiol., 67:1–12.PubMedGoogle Scholar
  55. Jakinovitch, W., Jr., 1985. Sugar taste reception in the gerbil, in: “Taste, Olfaction, and the Central Nervous System”, D. W. Pfall, ed., pp. 65–91, Rockefeller Press, New York.Google Scholar
  56. Jones, C. G. and R. D. Firn, 1979. Some allelochemicals of Pterdium aquilinum and their involvement in resistance to Pieris brassicae, Biochem. Syst. Ecol., 7:187–192.Google Scholar
  57. Kandel, E., 1979. “Behavioral Biology of Aplysia”, W. H. Freeman and Co., San Francisco.Google Scholar
  58. Kaissling, K. and J. Thorson, 1980. Olfactory sensilla: structural, chemical and electrical aspects of the functional organization, in: “Receptors for Neurotransmitters, Hormones and Pheromones in Insects”, D. B. Sattelle, L. M. Hall, J. G. Hildebrand eds., pp. 261–282, Elsevier/North-Holland, New York.Google Scholar
  59. Kennedy, L. M. and B. Halpern, 1980a. Fly chemoreceptors: a model system for the taste modifier ziziphin, Physiol. Behavior, 24:1–9.Google Scholar
  60. Kennedy, L. M. and B. Halpern, 1980b. A biphasic model for action of the gymnemic acids and ziziphins on taste receptor cell membranes. Chem. Senses, 5:149–158.Google Scholar
  61. Kennedy, L. M., B. Sturkchow and F. J. Waller, 1975. Effect of gymnemic acid on single taste hairs of the housefly Musca domestica, Physiol. Behavior, 14:755–765.Google Scholar
  62. Klocke, J. A., M. Arisawa, S. S. Handa, A. D. Kinghorn, G. A. Cordell and N. R. Farnsworth, 1985. Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic grass inoids on two species of agricultural pests, Experientia, 41:379–382.PubMedGoogle Scholar
  63. Koul, O., 1982. Insect feeding deterrents in plants, Indian Rev. Life Sci., 2:97–125.Google Scholar
  64. Kubo, I. and K. Nakanishi, 1979. Some terpenoid insect antifeedants, in: “Advances in Pesticide Science”, H. Geissbuhler, ed., Part 2, pp. 284–294, Pergamon Press, Oxford.Google Scholar
  65. Kuppers, J. and U. Thurm, 1982. On the functional significance of ion circulation induced by electrogenic tissue, in: “Exogenous and Endogenous Influcences on Metabolic and Neural Control”, A. D. F. Addink and N. Spronk, eds, pp. 313–327, Pergamon Press, Oxford.Google Scholar
  66. Kurihara, K., K. Yoshii and M. Kashiwayanagi, 1986. Transduction mechanisms in chemoreception, J. Comp Biochem. Physiol., in press.Google Scholar
  67. Levinson, H.Z., 1976. The defensive role of alkaloids in insects and plants, Experientia, 32: 408–411.Google Scholar
  68. Linn, E. C. and W. L. Roelofs, 1984. Sublethal effects of neuroactive compounds on pheromone response thresholds of male oriental fruit moths, Arch. Insect Biochem. Physiol., 1:331–344.Google Scholar
  69. Linn, E. C. and W. L. Roelofs, 1986. Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromone in the cabbage looper moth, Trichoplusia ni, Arch. Insect Biochem. Physiol., 3:161–171.Google Scholar
  70. Long, T. F. and L. L. Murdock, 1983. Stimulation of blow fly feeding behavior by octopaminergic drugs, Proc. Nat. Acal. Sci., USA, 80:4159–4163.Google Scholar
  71. Ma, W. C., 1972. Dynamics of feeding responses in Pieris brassicae L. as a function of chemosensory input: a behavioral, ultrastructural and electrophysiological study, Meded. Landbouwhohgesch, 001 Wageningen, 7211:1–162.Google Scholar
  72. Ma, W. C., 1976. Electrophysiological evidence for chemosensitivity to adenosine, adenine and sugars in Spodoptera exempta and related species, Experientia, 33:356–358.Google Scholar
  73. Ma, W.C., 1977. Alterations of chemoreceptor function in armyworm larvae (Spodoptera exempta) by a plant-derived sesquiterpene and by sulfhydryl reagents, Physiol. Entomol., 2:199–207.Google Scholar
  74. Maes, F. W., 1985a. Response noise affects the graphical evaluation of response versus concentration curves, Chem. Senses, 10:23–34.Google Scholar
  75. Maes, F. W., 1985b. Improved best stimulus classifications of taste neurons, Chem. Senses, 10:35–44.Google Scholar
  76. McLachlan, D., J. T. Arnason, B. J. R. Philogene and D. Champagne, 1982. Antifeedant activity of polyacetylene, phenylheptatriyne (DHT), from the Asteraceae to Euxoa messoria (Lepidoptera: Noctuidae), Experientia, 38:1061–1062.Google Scholar
  77. Mercer, A. R. and R. Menzel, 1982. The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honey bee Apis mellifera, J. Comp. Physiol., 145:363–368.Google Scholar
  78. Miller, J. R. and K. L. Strickler, 1984. Finding and accepting host plants, in: “Chemical Ecology of Insects”, W. Bell and R. Carde, eds, pp. 127–158, Sinauer Assoc., Sunderland.Google Scholar
  79. Mitchell, B. K., 1985. Specificity of an amino acid-sensitive cell in the adult Colorado beetle, Leptinotarsa decemlineata, Physiol. Entomol., 10:421–429.Google Scholar
  80. Mitchell, B. K. and P. Gregory, 1979. Physiology of maxillary sugar sensitive cell in the red turnip beetle, Entomoscelis americana, J. Comp. Physiol., 132:167–178.Google Scholar
  81. Mitchell, B. K. and G. D Harrison, 1984. Characterization of galeal chemosensilla in the adult Colorado potato beetle, Leptinotarsa decemlineata, Physiol. Entomol., 9:49–56.Google Scholar
  82. Mitchell, B. K. and G. D. Harrison, 1985. Effects of Solanum glycoalkaloids on chemosensilla in the Colorado potato beetle; a mechanism of feeding deterrence, J. Chem. Ecol., 11:73–83.Google Scholar
  83. Mitchell, B. K. and J. F. Sutcliffe, 1984. Sensory inhibition as a mechanism of feeding deterrence: effects of three alkaloids on leaf beetle feeding, Physiol. Entomol., 9:57–64.Google Scholar
  84. Morita, H. and A. Shirahashi, 1985. Chemoreception physiology, in: “Comprehensive Insect Physiology Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds, vol. 6, pp. 133–170, Pergamon Press, New York.Google Scholar
  85. Morita, H., K. Enomoto, M. N. Kakashima, I. Shimada and H. Kijima, 1977. The receptor site for sugars in chemoreception of the flesh fly and the blow fly, in: “Proceed. of Sixth Intern. Symp. Olfaction and Taste”, J. LeMagnen and P. MacLeod, eds., pp. 39–46, Information Retrieval, London.Google Scholar
  86. Murdock, L. L., G. Brookhart, R. S. Edgecomb, T. F. Long and L. Sudlow, 1985. Do plants “psychomanipulate” insects, in: “Bioregulators for Pest Control”, P. A. Hedin, ed., Symp. Ser. No.217, Amer. Chem. Soc., Press, Washington.Google Scholar
  87. Mustaparta, H., 1984. Olfaction, in: “Chemical Ecology of Insects”, W. Bell and R. Carde, eds, pp. 37–72, Sinauer Assoc. Sunderland.Google Scholar
  88. Nathanson, J. A., 1984. Caffeine and related methylxanthines: possible naturally occurring pesticides, Science, 226:184–187.PubMedGoogle Scholar
  89. Nielsen, J. K., L. M. Larsen and H. J. Sorenson, 1977. Curcubitacins E and I in Iberis amara, feeding inhibitors for Phyllotreta nemorum, Phytochem., 16:1519–1522.Google Scholar
  90. Nolen, T. G. and R. R. Hoy, 1984. Initiation of behavior by single neurons: the role of behavioral context, Science, 226:992–994.PubMedGoogle Scholar
  91. Norris, D. M., 1986. Antifeeding, in: “Chemistry of Plant Protection”, G. Hang and H. Hoffman, eds, pp. 99–146, Springer-Verlag, New York.Google Scholar
  92. Ohrui, H., H. Hiroyuki, I. Shimada and H. Meguro, 1985. Sweet taste response of fly to furanoses and their analogues, Agric. Biol. Chem., 49:3319–3321.Google Scholar
  93. Ohta, M., T. Narahashi and R. F. Keeler, 1973. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons, J. Pharmac. Exp. Therap., 184:143–154.Google Scholar
  94. Pelhate, M. and D. Sattelle, 1982. Pharmacological properties of insect axons, J. Insect Physiol., 11:889–903.Google Scholar
  95. Phillips, C. and J. Vandeberg, 1976. Mechanism of fluid flow in trichogen and tormogen cells of Phormia regina (Meigen), Int. J. Insect Morphol. Embryol., 5:423–431.Google Scholar
  96. Prokopy, R. J., R. H. Collier and S. Finch, 1983. Leaf color used by cabbage root flies to distinguish among host plants, Science, 221:190–192.PubMedGoogle Scholar
  97. Reed, D. K., W. F. Kwolek and C. R. Smith, Jr., 1983. Investigation of antifeedant and other insecticidal activities of trewiasine towards the striped cucumber beetle and codling moth. J. Econ. Entomol., 76:641–645.Google Scholar
  98. Rees, C. J. C., 1969. Chemoreceptor specificity associated with choice of feeding site by the beetle, Chrysolina brunsvicensis on its food plant, Hypericum hirsutum, Entomol. Exp. Appl., 12:565–583.Google Scholar
  99. Russell, G. B., D. R. W. Sutherland, R. F. N. Hutchins and P. E. Christmas, 1978. Vestitol: a phytoalexin with insect feeding deterrent activity, J. Chem. Ecol., 4:571–579.Google Scholar
  100. Seath I., 1977. Sensory feedback in the control of mouthpart movements in the desert locust Schistocerca gregaria, Physiol. Entomol., 2:147–156.Google Scholar
  101. Schoonhoven, L. M., 1972a. Secondary plant substances and insects, Rec. Adv. Phytochem., 5:197–224.Google Scholar
  102. Schoonhoven, L. M., 1972b. Plant recognition by lepidopterous larvae, in: “Symposia of the Royal Entomological Society”, H. F. Van Emden, ed., pp. 87–99, Blackwell Scientific, Oxford.Google Scholar
  103. Schoonhoven, L. M., 1981. Chemical mediators between plants and phytophagous insects, in: “Semiochemicals: their Role in Pest Control”, D. A. Nordlund, R. L. Jones and W. J. Lewis, eds, pp. 33–50, John Wiley and Sons, Inc., New York.Google Scholar
  104. Schoonhooven, L. M., 1982. Biological aspects of antifeedants, Entomol. Exp. Appl., 31:57–69.Google Scholar
  105. Schoonhoven, L. M. 1986. What makes a caterpillar eat? The sensory code underlying feeding behavior, in: “Perspectives in Chemoreception and Behavior”, E. A. Bernays and R. F. Chapman, eds., Springer-Verlag, in press.Google Scholar
  106. Schoonhoven, L. M. and T. Jermy, 1977. A behavioral and electrophysiological analysis of insect feeding deterrents, in: “Crop protection agents”, McFarlane ed., pp. 133–146. Academic Press, New York.Google Scholar
  107. Shaaban, F. El-D. and W. R. Doskotch, 1980. Antifeedant diterpenes for the gypsy moth larva from Kalmia latifolia: isolation and characterization of ten grayanoids, J. Nat. Prod., 43:617–631.Google Scholar
  108. Shimada, I., 1975. Chemical treatments of the labellar sugar receptor of the fleshfly, J. Insect. Physiol., 21:1565–1574.PubMedGoogle Scholar
  109. Shimada, I., H. Horiki, O. Hiroshi and H. Meguro, 1985. Taste responses to 2,5-anhydro-D-hexitols; rigid stereospecificity of the furanose site in the sugar receptor of the flesh fly, J. Comp. Physiol., 157:477–482.Google Scholar
  110. Shimada, I., A. Shirahashi, H. Kijima and H. Morita, 1974. Separation of two receptor sites in a single labellar sugar receptor of the flesh fly by treatment with p-chloromercuribenzoate, J. Insect Physiol., 20:605–621.PubMedGoogle Scholar
  111. Shirahashi, A. and T. Yano, 1984. Neuronal control of the feeding behavior in the blow fly, in: “Animal behavior”, K. Aoki, S. Ishi and H. Morita, eds., pp. 83–93. Japan Scientific Soc. Press, Tokyo.Google Scholar
  112. Simmonds, M. J. J. and W. M. Blaney, 1983. Some neurophysiological effects of azadirachtin on lepidopterous larvae and their feeding response, Proceed. 2nd Int. Neem Conference, Rauischdzhausen, pp. 163–180.Google Scholar
  113. Singh, R. P. and N. C. Pant, 1980. Lycorine -a resistance factor in plants of subfamily amaryllidoideae (Amaryllidaceae) against desert locust Schistocerca gregaria, Experientia, 36:525–553.Google Scholar
  114. Smith, D. V. and J. B. Travers, 1979. A metric for breadth of tuning of gustatory neurons, Chemical Senses and Flavour, 4:215–229.Google Scholar
  115. Stadler, E., 1984. Contact chemoreceptors, in: “Chemical Ecology of Insects”, W. Bell and R. Carde eds., pp. 3–36, Sinauer Associates, Sunderland,.Google Scholar
  116. Steinhardt, R. A., H. Morita and E. S. Hodgson, 1967. Mode of action of straight chain hydrocarbons on primary chemoreceptors of the blow fly, Phormia regina, J. Cell Physiol., 67:53–62.Google Scholar
  117. VandeBerg, J. S., 1981. Ultrastructural and cytochemical parameters of chemical perception, in: “Perception of behavioral chemicals”, D. M. Norris ed., pp. 105–131., Elsevier/North-Holland, New York.Google Scholar
  118. van Drongelen, W., 1978. The significance of contact chemoreceptor sensitivity in the larval stage of different Yponomeuta species, Entomol. Exp. Appl., 24:143–147.Google Scholar
  119. van Drongelen, W. and J. J. van Loon, 1980. Inheritance of gustatory sensitivity in F1 progeny of crosses between Yponomeuta cagnagellus and Y. malinellus, Entomol. Expt. Appl., 28:199–203.Google Scholar
  120. van der Wolk, F. M., B. Menco, and H. van der Starre, 1984. Freezefracture characteristics of insect gustatory and olfactory sensilla. II. Cuticular features, J. Morph., 179:305–321.Google Scholar
  121. Vogt, L. M., L. M. Riddiford and G. D. Prestwich, 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus, Proc. Nat. Acad. Sci., U.S.A., 82:8827–8831.Google Scholar
  122. Wada, K. and K. Munakata, 1968. Naturally occurring insect control chemicals. Isoboldine, a feeding inhibitor and cocculodine, an insecticide in the leaves of Cocculus trilobus, J. Agr. Food Chem., 16:471–474.Google Scholar
  123. Wada, K., Y. Enomoto and K. Munakata, 1970. Insect feeding inhibitors in plants II. Structures of shiromodiol diacetate, shiromool and shiromodiol monoacetate, Agric. Biol. Chem., 34:946–953.Google Scholar
  124. Warthen, J. D. Jr., R. E. Redfern, E. C. Vebel and G. D. Mills, Jr., 1978. An antifeedant for fall armyworm larvae from neem seeds, Agric. Res. Results, 1:1–9.Google Scholar
  125. Wieczorek, H., 1976. The glycoside receptor of the larvae of Mamestra brassicae (Lepidoptera: Noctuidae), J. Comp. Physiol., 106:153–176.Google Scholar
  126. Wieczorek, H. and L. R. Koppl, 1982. Reaction spectra of sugar receptors in different taste hairs of the fly, J. Comp. Physiol., 149:207–213.Google Scholar
  127. Wieczorek, H. and W. Gnatzy, 1985. The electrogenic pump of insect cuticular sensilla, Insect Biochem., 15:225–232.Google Scholar
  128. Winstanley, C. and W. M. Blaney, 1978. Chemosensory mechanisms of locusts in relation to feeding, Entomol. Exp. Appl., 24:550–558.Google Scholar
  129. Wolbarsht, M. L. and F. E. Hanson, 1965. Electrical activity in the chemoreceptors of the blowfly. III. Dendritic action potentials, J. Gen. Physiol., 48:673–683.PubMedGoogle Scholar
  130. Woodhead, S., 1983. Surface chemistry of Sorghum bicolor and its importance in feeding by Locusta migratoria, Physiol. Entomol., 8:345–352.Google Scholar
  131. Wright, D. P., Jr., 1967. Antifeedants, in: “Pest Control”, W. Kilgore and R. Doutt, eds., pp. 287–293, Academic Press, New York.Google Scholar
  132. Yajima, T. and K. Munakata, 1979. Phloroglucinol-type furanocoumarins: a group of potent naturally-occurring insect antifeedants, Agric. Biol. Chem., 43:1701–1706.Google Scholar
  133. Zacharuk, R. Y., 1985. Antennae and sensilla, _in: “Comprehensive Insect Physiology Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds, Vol. 6, pp. 1–69, Pergamon Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • James L. Frazier
    • 1
  1. 1.Experimental Station, Agricultural Products DepartmentE. I. du Pont de Nemours & Co., Inc.WilmingtonUSA

Personalised recommendations