Skip to main content

Multivariate Bayesian Classification Models: Application to the Optimal Selection of Prospecting Areas and Exploration Targets

  • Chapter
Statistical Models for Optimizing Mineral Exploration

Abstract

The problem of decision-making under uncertainty assumes a critical importance when costly drilling decisions need to be made, particularly in petroleum exploration. We find ourselves in two types of situations: (i) Control data are available in well-prospected areas with similar geological make-up, or (ii) no control locations are available. The second situation is increasingly common, as explorationists have to deal with more remote and little-known regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter 6

Section 1: Classification based on control data

  1. ANDERSON, T.W., 1958, An introduction to multivariate statistical analysis; John Wiley, New York.

    Google Scholar 

  2. BEAUCHAMP, J.J., BEGOVICH, C.L., KANE, Y.E. and WOLF, D.A., 1980, Application of Discriminant Analysis and generalized distance measures to uranium exploration; Jour. Math. Geol., V.12, pp.539–558.

    Article  Google Scholar 

  3. BECKMAN, R.J. and JOHNSON, M.E., 1981, A ranking procedure for “partial” Discriminant Analysis; Jour. Amer. Stat. Assoc, V.76, pp.671–675.

    Article  Google Scholar 

  4. BOTBOL, J.M., 1971, An application of Characteristic Analysis to mineral exploration, in Decision-making in the Mineral Industry; Can. Inst. Min. and Metal., Spec. V.12, pp.92–99.

    Google Scholar 

  5. BOTBOL, J.M., 1971, CHARAN, a FORTRAN IV Programme for Characteristic Analysis.

    Google Scholar 

  6. BOTBOL, J.M., SINDING LARSEN, R., McCAMMON, R.B. and GOTT, G.B., 1978, A regionalized multivariate approach to target selection in geochemical exploration; Econ. Geol., V.73, pp.534–546.

    Article  Google Scholar 

  7. BROFFIT, J.D., RANDLES, R.H. and HOGG, R.V., 1976, Distribution-free “partial” Discriminant Analysis; Jour. Amer. Stat. Assoc., V.71, pp.934–939.

    Article  Google Scholar 

  8. BULL, A.J. and MAZUCHELLI, R.H., 1975, Applications of Discriminant Analysis to the geochemical evaluation of gossans, in “Geochemical Exploration 1974”, Elliot, J.L. and Fletcher, W.K., Editors, Elsevier Publ., pp.219–226.

    Google Scholar 

  9. CASSETTI, E., 1964, Classification and regional analysis by discriminant iterations; Tech. Rept. 12, ONR Task No.389-135, pp.95.

    Google Scholar 

  10. CHUNG, C.F., 1977, An application of Discriminant Analysis for evaluation of mineral potential; Proc. 14th Int. Symp. Computers in Mineral Industries, pp.299–311.

    Google Scholar 

  11. DAVIS, D.R., KISIEL, C.C and DUCKSTEIN, L., 1973, Bayesian methods for decision-making in mineral exploration; Proc. A.P.C.O.M. Symposium No.11, Tucson, pp.B55–B67.

    Google Scholar 

  12. DE GEOFFROY, J. and WIGNALL, T.K., 1970, Statistical decision in regional exploration, application of regression and Bayesian classification analysis in the southwest Wisconsin zinc area; Econ. Geol., V.65, pp.769–777.

    Article  Google Scholar 

  13. DE GEOFFROY, J. and WIGNALL, T.K., 1970, Application of statistical decision techniques to the selection of prospecting areas and drilling targets in regional exploration; Can. Inst. M.&M. Bull., August, pp.893–899.

    Google Scholar 

  14. DE GEOFFROY, J. and WICNALL, T.K., 1971, A probabilistic appraisal of mineral resources in a portion of the Grenville Province of the Canadian Shield; Econ. Geol., V.66, pp.466–479.

    Article  Google Scholar 

  15. DE GEOFFROY, J.G. and WIGNALL, T.K., 1972, A statistical study of the geological characteristics of the porphyry-copper-molybdenum deposits of North and South America; application to the rating of porphyry prospects; Econ. Geol., v.67, pp.656–668.

    Article  Google Scholar 

  16. DE ST JORRE, M.G.F. and WHITMAN, W.W., 1972, A probabilistic method of ranking underground exploration proposals; Econ. Geol., V.67, pp.789–793.

    Article  Google Scholar 

  17. DIVI, S.R., THORPE, R.I., and FRANKLIN, J.M., 1979, Application of Discriminant Analysis to evaluate compositional controls of stratiform massive sulphide deposits in Canada; Jour. Math. Geol., V.11, No.4, pp.391–406.

    Article  Google Scholar 

  18. DOVETON, J.H., 1976, Linear Discriminant Analysis can be used as an oil-prospect exploration guideline; Oil and Gas Jour., V.74, No.18, pp.324–328.

    Google Scholar 

  19. . DOWDS, J.P., 1966, Petroleum exploration by Bayesian analysis; Proc., V.2, 6th Ann.Internat. Symp. Computer Ops. Res., Penn. State Univ., pp.FF1–FF26.

    Google Scholar 

  20. DUBOV, R.I., 1972, A statistical approach to the classification of geochemical anomalies; Proc. London Symp. Inst. M.&M. pp.275–285.

    Google Scholar 

  21. FISHER, R.A., The use of multiple measurements in taxonomic problems; Annual of Eugenics, V.7, pp.179–188.

    Google Scholar 

  22. FUKUNAGA, K., 1972, Introduction to statistical Pattern Recognition; Academic Press, New York.

    Google Scholar 

  23. GOVETT, G.J.C., 1972, Interpretation of a rock geochemical exploration survey in Cyprus -statistical and graphical techniques; Jour. Geochem. Explor., V.1, No.1, pp.77–102.

    Article  Google Scholar 

  24. GRIFFITHS, J.C., 1966, Application of discriminant functions as a classification tool in the Earth Sciences; Kansas Gol. Survey, Computer contr., V.7, pp.48–51.

    Google Scholar 

  25. HARRIS, D.P., 1965, Multivariate statistical analysis -a decision tool for mineral exploration; Short Course Symposium on Computers and Computer Applications in Mining and Exploration, V.1, Univ. of Arizona, pp.C1–C35.

    Google Scholar 

  26. HARRIS, D.P., 1969, Alaska’s base and precious metals resources: a probabilistic regional appraisal, 7th Intl. Symp. on Operations Research and Computer Applications in the Mineral Industries, Colorado School Mines Quarterly, V.64, No.3, pp.295–327.

    Google Scholar 

  27. HOWARTH, R.J., 1971, Empirical discriminant classification of regional stream-sediment geochemistry in Devon and East Cornwall; Trans. Inst. Min. Metall., V.80, PP.B142–B149.

    Google Scholar 

  28. HOWARTH, R.J., 1973, The Pattern Recognition problem in applied geochemistry, in “Geochemical Exploration, 1972”, M.J. Jones, Editor; Trans.Inst.M.&M., London, pp.B259–B273.

    Google Scholar 

  29. HUTCHINSON, R.I., BOWES, D.R. and SKINNER, D.L., 1976, Discriminant Analysis of trace elements in strata of the Witwatersrand system; Jour. Math. Geol., V.8, No.4, pp.413–428.

    Article  Google Scholar 

  30. JOYCE, A.S. and CLEMA, J.M., 1974, An application of statistics to the chemical recognition of nickel gossans in the Yilgarn Block, Western Australia; Proc. Austral. Inst. 9M.&M., December, pp.21–23.

    Google Scholar 

  31. JZIBA, Z.V., 1964, A contribution to the statistical theory of classification, Stanford Univ. Publ. in Geol. Sc., Spec. Vol. No.9, Part 2, pp.729–756.

    Google Scholar 

  32. KLOVAN, J.E. and BILLINGS, G.K., 1967, Classification of geological samples by discriminant-function-analysis; Bull. Can. Pet. Geol., V.15, pp.313–330.

    Google Scholar 

  33. MARCOTTE, D. and DAVID, M., 1981, Target definition of Kurokotype deposits in Abitibi by Discriminant Analysis of geochemical data; Can. Inst. M.&M., Bull. April, pp.1 02–107.

    Google Scholar 

  34. PATTERSON, D.A., PIRKLE, F.L., JOHNSON, M.E. and BEMENT, T.R., 1981, Discriminant Analysis applied to radiometric data and its application to Uranium favourability in South Texas; Jour. Math. Geol., V.13, No.6.

    Google Scholar 

  35. PRELAT, A.E., 1977, Discriminant analysis as a method of predicting mineral occurrence potential in Central Norway; Jour. Math. Geol., V.9, pp.345–367.

    Google Scholar 

  36. SABINS, F.F. Jr., 1973, Remote Sensing: principles and interpretation; W.H. Freeman, San Francisco, Calif., U.S.A.

    Google Scholar 

  37. SIMARD, R.G., 1980, Logistic model applied to geophysical data for sulphide nickel exploration; Can. Inst. M.&M. Bulletin, December, pp.96–100.

    Google Scholar 

  38. SWITZER, P., 1981, Extensions of linear Discriminant Analysis for statistical classification of remotely sensed satellite imagery; Jour. of Math. Geol., V.12, pp.367–376.

    Article  Google Scholar 

  39. WHITEHEAD, R.E.S. and GOVETT, G.J.S, 1974, Exploration rock geochemistry -detection of trace element halos at Heath Steel Mines (N.B., Canada) by Discriminant Analysis; Jour. Geochem. Explor., V.3, No.4, pp.371–386.

    Article  Google Scholar 

  40. WIGNALL, T.K., 1968, Oil and gas exploration; statistical decision criteria, S.P.E. paper 223; A.I.M.E., Houston, Texas, U.S.A.

    Google Scholar 

  41. WIGNALL, T.K., 1969, Generalized Bayesian classification functions: K classes, -Application to a regional geochemical survey in southeastern Pennsylvania; Econ. Geol., V.64, pp.570–576.

    Article  Google Scholar 

Section 2; Classification without Control data

  1. AGENO, M. and FRONTALI, C., 1963, Analysis of frequency distribution curves into overlapping Gaussians; Nature, V.198, No.4887, pp 1294–1295.

    Article  Google Scholar 

  2. AHRENS, L.H., 1963, Element Distributions in Igneous Rocks (VI), Negative Skewness of SiO2 and K; Geochem. &Cosmochim. Acta, V.27, pp 929–937.

    Article  Google Scholar 

  3. BHATTACHARYA, C.G., 1967, A simple method of resolution of a distribution into Gaussian components; Biometrics, V.23, No.1, pp 115–135.

    Article  Google Scholar 

  4. BRIDGES, N.J. and McCAMMON, R.B., 1980, DISCRIM: a computer program using interactive approach to dissect a mixture of Normal or Lognormal distributions; Comput. &Geosc., V.6, pp 361–396.

    Article  Google Scholar 

  5. CASSIE, R.K., 1954, Some uses of probability paper in the analysis of size frequency distributions; Aust. Jour. Mar. Freshwater Res., V.5, No.3, PP 513–522.

    Google Scholar 

  6. CLARK, M.W., 1976, Some Methods for Statistical analysis of Multimodal Distributions and their Application to Grain-Size Data; J. Math. Geol., V.8, No.3, PP 267–281.

    Article  Google Scholar 

  7. DAY, N.E., 1969, Estimating the components of a mixture of normal distributions; Biometrika, V.56, No.3, PP 463–474.

    Article  Google Scholar 

  8. EISENBERGER, I., 1964, Genesis of Bi-modal Distributions; Technometrics, V.6, pp 357–363.

    Article  Google Scholar 

  9. FRYER, J.G. and ROBERTSON, C.A., 1972, A comparison of some methods for estimating mixed Normal distributions; Biometrika, V.59, pp 639–648.

    Article  Google Scholar 

  10. HARRIS, D., 1968, A method of separating two superimposed normal distributions using arithmetic probability paper; J. Animal Ecol., V.37, pp 315–319.

    Article  Google Scholar 

  11. KLOVAN, J.E., 1968, Selection of target areas by factor analysis; Western Miner., V.41, No.2, pp 44–54.

    Google Scholar 

  12. KOCH, G.S. and LINK, R.F., 1970, Statistical Analysis of Geological Data, (Chpt 6); J. Wiley, N.Y., U.S.A.

    Google Scholar 

  13. LEPELTIER, C., 1969, A simplified statistical treatment of geochemical data by graphical representation; Econ. Geol., V.64, pp 538–550.

    Article  Google Scholar 

  14. McCAMMON, R.B., BRIDGES, N.J., MCCARTHY, J.H. Jr. and GOTT, G.B., 1979, Estimate of mixed geochemical populations in rocks at Ely, Nevada, in “Geochemical Exploration 1978”, Watterson, P.K. and Theobald, P.K., Editors, pp 385–390, Elsevier Public.

    Google Scholar 

  15. PARSLOW, G.R., 1974, Determination of background and threshold in exploration Geochemistry, J. Geochem. Expl., V.3, pp 319–336.

    Article  Google Scholar 

  16. PARSLOW, G.R., 1979, Interpretation of some geochemical distributions in Key and Seahorse Lakes, Saskatchewan; Can. Inst M.&M. Bull., V.72, No.804, pp 112–117.

    Google Scholar 

  17. RAO, C.R., 1952, Advanced statistical methods in biometric research; John Wiley and Sons, N.Y.

    Google Scholar 

  18. SINCLAIR, A.J., 1974, Selection of threshold values in geochemical data using probability graphs; Jour. Geochem. Expl., V.3, No.2, pp 129–149.

    Article  Google Scholar 

  19. UNITED STATES NAVAL PERSONNEL RESEARCH ACTIVITY, 1967, NORMIX, computational methods for estimating the parameters of multivariate normal mixtures of distributions, Research Memorandum, SRM 68-2, San Diego, Calif., U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Wignall, T.K., De Geoffroy, J. (1987). Multivariate Bayesian Classification Models: Application to the Optimal Selection of Prospecting Areas and Exploration Targets. In: Statistical Models for Optimizing Mineral Exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1861-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1861-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9038-4

  • Online ISBN: 978-1-4613-1861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics