Advertisement

Application of the General Linear Model (GLM) and Operations Research (OR) Models to the Optimization of Field Exploration and Development Planning

  • T. K. Wignall
  • J. De Geoffroy

Abstract

It is well recognized that there are important relationships between quantitative or quantified geo-variates and the geological, geophysical and geochemical environment of mineral deposits, some of which are diagnostic of the occurrence of ore. However, since there is still much uncertainty as to the precise nature of these relationships, we are introducing the GLM in order to make the best possible use of all correlations and interdependence which reflect statistically the very complex nature of the environment of ore deposits. The GLM, itself an optimized model, can be used to advantage for optimizing various mineral exploration procedures such as the location and delineation of exploration targets and the evaluation of their economic worth.

Keywords

Independent Variate Exploration Target Field Exploration Trend Surface Analysis Dual Simplex Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

BIBLIOGRAPHY FOR CHAPTER 5

Section 1: General Linear Model

  1. 1.
    AGTERBERG, F.P., 1964, Methods of Trend Surface Analysis; Colo. School of Mines Quart., V.59, pp.11–130.Google Scholar
  2. 2.
    AGTERBERG, F.P., 1970, Multivariate prediction equations in geology; Jour. Math. Geol., V.2, pp.319–324.CrossRefGoogle Scholar
  3. 3.
    AGTERBERG. F.P., 1971, A probability index for detecting favourable geological environments; Can. Inst. M.&M., Spec.Vol.12., pp.82–91.Google Scholar
  4. 4.
    AGTERBERG, F.P., 1974, Automatic contouring of geological maps to detect target areas for mineral exploration; Jour. Math. Geol., V.6, pp.375–395.Google Scholar
  5. 5.
    AGTERBERG, F.P., 1974, Geomathematics, (Chpts. 5 &15), Elsevier Publ., Amsterdam, Holland.Google Scholar
  6. 6.
    AGTERBERG, F.P., 1978, Quantification and statistical analysis of geological variables for mineral resource evaluation; Bur. Rech. Geol. Min. Memoire No.91, pp.399–406.Google Scholar
  7. 7.
    AGTERBERG, F.P., 1981, Applications of image analysis and multivariate analysis to mineral resource appraisal; Econ. Geol., V.76, pp.1016–1031.CrossRefGoogle Scholar
  8. 8.
    AGTERBERG, F.P. and CABILIO, P., 1969, Two-stage least-squares model for the relationship between mappable geological variables; Jour. Int. Assoc. Math. Geol., V.1, pp.37–153.Google Scholar
  9. 9.
    AGTERBERG, F.P. and FABBRI, A.G., 1978, Statistical treatment of tectonic and mineral deposit data; Global Tectonics and Metallogeny, V.1, No.1, pp.16–29.Google Scholar
  10. 10.
    BATES, C, 1959, An application of statistical analysis to exploration for uranium in the Colorado Plateau; Econ. Geol., V.54, pp.449–466.CrossRefGoogle Scholar
  11. 11.
    BOSTICK, N.H., 1970, Electronic data processing applied to uranium resource prediction and exploration; Trans. Soc. Min. Eng., A.I.M.E., V.247, pp.4–10.Google Scholar
  12. 12.
    BOTBOL, J.M., SINDING LARSEN, R., McCAMMON, R.B. and GOTT, G.B., 1977, Weighted Characteristic Analysis of spatially-dependent mineral deposit data; Jour. Math. Geol., V.9, No.3, pp.309–311.CrossRefGoogle Scholar
  13. 13.
    CANADIAN INSTITUTE OF MINING AND METALLURGY, 1968, Ore reserve estimation and grade control; C.I.M.M. Special Volume No.9, Montreal, Canada.Google Scholar
  14. 14.
    CHAPMAN, R.P., 1976, Limitations of Correlation and Regression Analysis n geochemical exploration; Trans. Inst. Min. Metall. (London), V.85, pp.B279–B283.Google Scholar
  15. 15.
    CHAPMAN, R.P., Geochemical interpretation of a statistical analysis of multi-element stream sediment data collected from New Brunswick; Can. Inst. M.&M. Bull., V.70, No.788, pp.62–69.Google Scholar
  16. 16.
    CHAPMAN, R.P., 1978, Evaluation of some statistical methods of interpreting multi-element geochemical drainage data from New Brunswick; Jour. Math. Geol., V.10, No.2, pp.195–224.CrossRefGoogle Scholar
  17. 17.
    CHORLEY, R.J. and HAGGETT, P., 1965, Trend surface mapping in geological research; Trans. Inst. British Geogr. Publ. No.37.Google Scholar
  18. 18.
    CHUNG, C.F., and AGTERBERG, F.P., 1980, Regression models for estimating mineral resources from geological map data; Jour. Math. Geol., V.12, pp.458–473.Google Scholar
  19. 19.
    DAVIS, J.C., 1974, Statistics and data analysis in Geology (Chpts. 5 &6); J. Wiley, New York.Google Scholar
  20. 20.
    DE GEOFFROY, J.G. and WIGNALL, T.K., 1970, Application of statistical decision techniques to the selection of prospecting areas and drilling targets in regional exploration; Can. Inst. M.&M. Bull., August, pp.893–899.Google Scholar
  21. 21.
    DE GEOFFROY, J.G. and WIGNALL, T.K., 1970, Statistical decision in regional exploration: application of Regression and Bayesian classification analyses in the South-West Wisconsin Zinc Area; Economic Geol., V.65, pp.769–777.CrossRefGoogle Scholar
  22. 22.
    DE GEOFFROY, J.G. and WIGNALL, T.K., 1971, A probabilistic appraisal of mineral resources in a portion of the Grenville Province of the Canadian Shield; Economic Geol., V.66, pp.466–479.CrossRefGoogle Scholar
  23. 23.
    DE GEOFFROY, J. and WIGNALL, T.K., 1972, A statistical study of the geological characteristics of the porphyry-copper-molybdenum deposits of North and South America; Economic Geol., V.67, pp.656–668.CrossRefGoogle Scholar
  24. 24.
    DE GEOFFROY, J. and WIGNALL, T.K., 1973, Design of a statistical data processing system to assist in regional exploration planning; Can. Mining Jour., V.94, No.11, pp.30–35 &No.12, pp.35–36.Google Scholar
  25. 25.
    DE GEOFFROY, J.G. and WIGNALL, T.K., 1973, Statistical models for porphyry-copper-molybdenum deposits of the Cordilleran Belt of North and South America; Can. Inst. M.&M. Bull., May, pp.84–90.Google Scholar
  26. 26.
    DRAPER, N.D. and SMITH, H., 1966, Applied Regression Analysis; J. Wiley, New York.Google Scholar
  27. 27.
    GRAYBILL, F.A., 1961, Introduction to linear statistical models; McGraw-Hill, New York.Google Scholar
  28. 28.
    HARBAUGH, J.W., 1964, Use of Factor Analysis in recognizing facies boundaries, Bull. Am. Assoc. Petrol. Geologists, V.48, pp.529. (Abstract.)Google Scholar
  29. 29.
    HARBAUGH, J.W., 1964, A computer method for four-variable trend analysis illustrated by a study of oil-gravity variations in Southeastern Kansas; Kansas Geol. Surv. Bull., 171.Google Scholar
  30. 30.
    HARBAUGH, J.W. and MERRIAM, D.F., 1968, Computer applications in statigraphic analysis; J. Wiley, New York.Google Scholar
  31. 31.
    HARBAUGH, J.W. and BONHAM-CARTER, G.R., 1970, Computer simulation in Geology; J. Wiley, New York.Google Scholar
  32. 32.
    HARMAN, H.H., 1967, Modern Factor Analysis; Univ. of Chicago Press.Google Scholar
  33. 33.
    HENLEY, S., 1972, Non-linear mapping and a related R-mode technique for compression of multivariate data; Bureau of Mineral Resources, Geology and Geophysics, Bull. No.124, Canberra, Australia.Google Scholar
  34. 34.
    HENLEY, S., 1972, Plane representation of multivariate data structures; Bureau of Mineral Resources, Geology and Geophysics, Bull. No.123, Canberra, Australia.Google Scholar
  35. 35.
    KAISER, H.F., 1958, The VARIMAX criterion for analytic rotation in Factor Analysis, Psychometrika, V.23, pp. 187–200.CrossRefGoogle Scholar
  36. 36.
    KLOVAN, J.E., 1975, R-and Q-mode Factor Analysis, pp.21–69, in Concept in Geostatistics, R.S. McCammon, edit.; Springer-Verlag, New York.Google Scholar
  37. 37.
    KOCH, G.S. Jr. and LINK, R.F., 1971, Statistical analysis of geological data (Chpt.9); J. Wiley, New York.Google Scholar
  38. 38.
    KRUMBEIN, W.C., 1959, Trend Surface Analysis of contour-type maps with irregular control point spacing; Jour. Geophys. Res. V.64, pp.823–834.CrossRefGoogle Scholar
  39. 39.
    KRUMBEIN, W.C. and GRAYBILL, F.A., 1965, An introduction to statistical models in Geology, (Chpts. 10, 12, 13); McGraw-Hill, New York.Google Scholar
  40. 40.
    LAWLEY, D.N. and MAXWELL, A.E., 1963, Factor Analysis as a statistical method; Butterworth, London.Google Scholar
  41. 41.
    MERRIAM, D.F. and COCKE, N.C., (edit.), 1967, Computer applications in the Earth Sciences: colloquium on Trend Analysis; Kansas Geol. Survey Comput. Contrib. No.12.Google Scholar
  42. 42.
    MILLER, R.L. and KAHN, J.S., 1962, Statistical analysis in the geological sciences, (Chpts 8, 14 &15); J. Wiley, New York.Google Scholar
  43. 43.
    MORRISON, D.F., 1967, Multivariate statistical methods; McGraw-Hill, New York.Google Scholar
  44. 44.
    OVERALL, J.E. and KLETT, C., Applied Multivariate Analysis; McGraw-Hill, New York.Google Scholar
  45. 45.
    PIRKLE, F., CAMPBELL, K. and WECKSUNG, G.W., 1980, Principal Component Analysis as a tool for interpreting NURE aerial radiometric survey data; Jour. Geol., V.88, pp.57–67.CrossRefGoogle Scholar
  46. 46.
    RAO, C.R., 1955, Estimations and tests of significance in Factor Analysis; Psychometrika, V.20., pp. 93–111.CrossRefGoogle Scholar
  47. 47.
    RENDU, J.M., 1978, An introduction to geostatistical methods of mineral evaluation; Monograph of the S. Afr. Inst. M. &M.Google Scholar
  48. 48.
    SAAGER, R. and SINCLAIR, A.J., 1974, Factor Analysis of stream sediment geochemical data from the Mt Nansen area, Yukon Territory, Canada; Mineral. Deposita, V.9, pp.243–252.CrossRefGoogle Scholar
  49. 49.
    SAUNDERS D.F., 1979, Characterization of uraniferous geochemical provinces by aerial Gamma-Ray spectrometry; Min. Eng., December, pp.1715–1722.Google Scholar
  50. 50.
    SINCLAIR, A.J. and WOODSWORTH, G.L., 1970, Multiple Regression as a method of estimating exploration potential in an area near Terrace, B.C.; Econ. Geol., V.65, pp.998–1003.CrossRefGoogle Scholar
  51. 51.
    SINCLAIR, A.J. and GODWIN, C.I., 1979, Application of Multiple Regression Analysis to drill target selection, Casino porphyry-copper-molybdenum deposit, Yukon Territory, Canada; Trans. Inst. M.&M.,(London) V.88, pp.B93–B106.Google Scholar
  52. 52.
    WATSON, G.S., 1971, Trend Surface Analysis; Jour. Math. Geol., V.3, No.3, pp.215–226.CrossRefGoogle Scholar
  53. 53.
    WHITTEN, E.H.T., 1966, The general linear equation in prediction of gold content in Witwatersrand rocks, South Africa; Proc. Sympos. Math. Stat. and Comput. Appl. Johannesburg, pp.124–141.Google Scholar

Section 2: Operations Research Models

  1. 1.
    BATTERSBY, A., 1964, Network Analysis for planning and scheduling; Macmillan &Co. Ltd., London.Google Scholar
  2. 2.
    BERGE, C., 1973, Graphs and Hypergraphs; Elsevier, Amsterdam.Google Scholar
  3. 3.
    COBB, H., 1960, Operations Research: a tool in oil exploration; Geophysics, 25, 1009–1022.CrossRefGoogle Scholar
  4. 4.
    COHN, D.L., 1954, Optimal systems: 1. The vascular system; Bulletin of Mathematical Biophysics, V.16, pp.59–74.CrossRefGoogle Scholar
  5. 5.
    COX, J.L., 1961, Cutting costs through Operations Research; Min. Congr. Jour., 47, pp.45–46.Google Scholar
  6. 6.
    COYLE, R.G., 1969, Review of the literature on Operations Research in the mining industry; Trans. Inst. Min. Metall., London, 78, A1–A19.Google Scholar
  7. 7.
    CREIGHTON, R.L., HOCH, I. and SCHNEIDER, M., 1959, The optimum spacing of arterials and expressways; Traffic Quarterly, V.13, pp.447–494.Google Scholar
  8. 8.
    DUCKWORTH, E., 1962, A guide to Operations Research; Methuen, London.Google Scholar
  9. 9.
    FARBEY, B.A., LAND, A. and MURCHLAND, J.D., 1965, The “cascade” algorithm for finding minimum distances on a graph; London School of Economics, LSE-TNT-19.Google Scholar
  10. 10.
    GARRISON, W.L. and MARBLE, D.F., 1962, The structure of transportation networks; U.S. Army Transportation Command, Technical Report, pp.62–11Google Scholar
  11. 11.
    HARRIS, D., 1984, Computer Graphics and Applications; Chapman &Hall, London, and New York.Google Scholar
  12. 12.
    HARRIS, D.P. and EURISTY, D.A., 1973, The impact of the transportation network upon the potential supply of base and precious metals; Proc. 10th Internat. Symposium A.P.C.O.M., Johannesburg, S. Africa, S. Afr. Inst. Min. &Metall., pp.99–108.Google Scholar
  13. 13.
    HAZEN, S.W., Jr., 1968, Operations Research: a growing force in the mineral industries; Min. Eng., 20, pp 88–90.Google Scholar
  14. 14.
    KANSKY, K. J., 1963, Structure of transport networks: relationships between network geometry and regional characteristics; University of Chicago, Department of Geography, Research Papers, 84.Google Scholar
  15. 15.
    KLEINROCK, L., 1964, Communication nets: stochastic message flow and delay, J. Wiley, New York.Google Scholar
  16. 16.
    KU, Y.U. and BEDROSIAN, S.D., 1965, On topological approaches to network theory; Journal of the Franklin Institute, V.279, pp.11–21.CrossRefGoogle Scholar
  17. 17.
    LITTLE, J.D.C., MURTY, K.G., SWEENEY, D.W. and KAREL, C., 1963, An algorithm for the travelling salesman problem; Operations Research, V.11, pp.972–989.CrossRefGoogle Scholar
  18. 18.
    LOSCH, A., 1954, The economics of location; Yale University Press, New Haven.Google Scholar
  19. 19.
    MIEHLE, W., 1958A, Link-length minimization in networks; Operations Research, V.6, pp.232–243.CrossRefGoogle Scholar
  20. 20.
    MOORE, E.F., 1959, The shortest path through a maze, Annals of the Computation Laboratory of Harvard University.Google Scholar
  21. 21.
    PERT Guide for Management, 1963; U.S. Government Print Office, Washington.Google Scholar
  22. 22.
    PETERS, W.C., 1978, Exploration and Mining Geology, pp. 24–36; J. Wiley, New York.Google Scholar
  23. 23.
    POLLACK, M. and WIEBENSON, W., 1960, Solutions of the shortest-route problem: a review; Operations Research, V.8, pp.224–230.CrossRefGoogle Scholar
  24. 24.
    PRUSS, D.E, and FREEMAN, G.W., 1961, Mining exploration: An Operations Research and simulation approach; Min.World, 14, pp.42–43.Google Scholar
  25. 25.
    RAPAPORT, H. and ABRAMSON, P., 1959, An analogue computer for finding an optimum route through a communications network; Institute of Radio Engineers, Transactions on Communications systems, CS-7, 37–42.Google Scholar
  26. 26.
    ROUBENS, M. (Editor), 1977, Advances in Operations Research; Elsevier, Amersterdam.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. K. Wignall
    • 1
  • J. De Geoffroy
    • 2
  1. 1.University of GuamMangilaoGuam
  2. 2.GeostatisticsEdenAustralia

Personalised recommendations