Skip to main content

Probabilistic Models for the Optimal Detection of Ore Deposits by Airborne and Ground Exploration Programs

  • Chapter
Statistical Models for Optimizing Mineral Exploration
  • 143 Accesses

Abstract

The principal aim of field programs is to collect information which will lead to the detection of mineral deposits. There are two approaches to the detection problem: one is direct and the other one indirect; they are used simultaneously or sequentially to best advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter 4

  1. AGOCS, W.B., 1955, Line spacing effect and determination of optimum spacing illustrated by the Marmora, Ontario, magnetic anomaly; Geophys., B.20, N.4, pp.871–885.

    Article  Google Scholar 

  2. BELLMAN, R.E. and DREYFUS, S.E., 1962, Applied Dynamic Programming; Princeton University Press, New Jersey.

    Google Scholar 

  3. CELASUN, M.M., 1964, The allocation of funds to reconnaissance drilling prospects; Colorado Sch. of Mines Quarterly, V.59, No.4, pp.169–186.

    Google Scholar 

  4. CHUNG, C.F., 1981, Application of the Buffon needle problem and its extensions to parallel-line search sampling schemes; Jour. Math. Geol., V.13, No.5, pp.371–390.

    Article  Google Scholar 

  5. DE GEOFFROY, J. and WU, S.M., 1970, Design of an optimal sampling plan for regional geochemical surveys; Econ. Geol., V.65, pp.340–347

    Article  Google Scholar 

  6. DREW, L.J., 1967, Grid-drilling exploration and its application to the search for petroleum; Econ. Geol., V.62, pp.698–710.

    Article  Google Scholar 

  7. DREW, L.J., 1979, Pattern drilling exploration: optimum pattern types and hole spacing when searching for elliptical targets, Jour.Math.Geol., V.11, No.2, pp.223–254.

    Article  Google Scholar 

  8. ELLIS, R.M. and BLACKWELL, J.G., 1959, Optimum prospecting plans in mineral exploration; Geophys., V.24, No.2, pp.344–358.

    Article  Google Scholar 

  9. GRAYSON, C.J. Jr., 1960, Decisions under uncertainty, drilling decisions by oil and gas operators; Graduate School of Business Administration, Division of Research, Harvard University, Boston, Mass.

    Google Scholar 

  10. GRIFFITHS, J.C., 1966, Grid spacing and success ratio in exploration for natural resources; Pennsylvania State Univ., Min.Ind.Expmt.Stat., Special Publ.No.1.

    Google Scholar 

  11. HARBAUGH, S.W. and BONHAM-CARTER, G.R., 1970, Computer simulation in Geology, (Chapter 8); J. Wiley, New York.

    Google Scholar 

  12. JACOBS, O.L. R., 1967, An introduction to Dynamic Programming: the theory of multistage decision processes; Chapman and Hall, London, U.K.

    Google Scholar 

  13. KENDALL, M.G. and MORAN, P.A.P., 1963, Geometrical probability; Chas. Griffith, London, U.K.

    Google Scholar 

  14. KOCH, G.S. and LINK, R.F., 1970, Statistical analysis of geological data, V.2, (Chpts. 12 &14); J. Wiley, New York, USA.

    Google Scholar 

  15. McCAMMON, R.B., 1977, Target intersection probabilities for parallel line and continuous grid types of search; Jour. Math. Geol., V.9, No.4, pp.369–382.

    Article  Google Scholar 

  16. MICKEY, M.R. and JESPERSEN, H.W., 1954, Some statistical problems of uranium exploration; U.S. Atomic Energy Commission Report, RME-3105.

    Google Scholar 

  17. PETERSON, E.L., 1961, Statistical analysis and optimization of systems; John Wiley, New York.

    Google Scholar 

  18. SAYINSKII, I.D., 1965, Probability tables for locating elliptical underground masses with a rectangular grid; Consult. Bureau, New York.

    Google Scholar 

  19. SHURYGIN, A.M., 1976, Discovery of deposits of given size by boreholes with pre-selected probability; Jour. Nath, Geol.., V.8, No.1, pp.85–88.

    Google Scholar 

  20. SHURYGIN, A.M., 1976, The probability of finding deposits and some optimal search grids; Jour.Math.Geol., V.8, No.3, pp.323–330.

    Article  Google Scholar 

  21. SINCLAIR, A.J., 1975, Some considerations regarding grid orientation and sample spacing, in “Geochemical Exploration 1974”, Elliot, I.L. and Fletcher, W.K., (Eds.), Elsevier, Amsterdam, Holland.

    Google Scholar 

  22. SINCER, D.A. and WICKHAM, F.E., 1969, Probability tables for locating elliptical targets with square, rectangular, and hexagonal point-nets; Pennsylvania State Univ.Miner.Sc.Expmt.Stat. Special Publ. No.1-69.

    Google Scholar 

  23. SINGER, D.A., 1972, ELLIPGRID, a FORTRAN IV program for calculating the probability of success in locating elliptical targets with square, rectangular, and hexagonal grids; Geocom Programs, No.4, pp.1–16.

    Google Scholar 

  24. SINGER, D.A., 1975, Relative efficiencies for square and triangular grids in the search for elliptically-shaped resource targets; U.S. Geol. Survey, Jour. of Research, V.3, No.2, pp.163–167.

    Google Scholar 

  25. SINGER, D.A., 1976, RESIN, a FORTRAN IV program for determining the area of influence of samples or drill holes in resource target search; Computers and Geosciences, V.2, No.2, pp.249–260.

    Article  Google Scholar 

  26. SIVAZLIAN, B.D. and STANFEL, L.E., 1975, Optimization techniques in Operations Research; Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  27. SLICHTER, L.B., 1955, Geophysics applied to prospecting of ores; Economic Geol., Jubilee Vol., No.50, pp.885–969.

    Google Scholar 

  28. SOLOMON, H., 1978, Geometric probability; Soc.Ind.Appl Math. (S.I.A.M.), Pennsylvania, USA.

    Google Scholar 

  29. STONE, L.D., 1975, Theory of optimal search; Academic Press, New York, USA.

    Google Scholar 

  30. TRUEMAN, R.E., 1974, An introduction to quantitative methods for decision-making, (Chpt.4); Holt-Rinehart-Winston, New York, USA.

    Google Scholar 

  31. WIGNALL, T.K. and DE GEOFFROY, J., 1985, OPTGRID, an improved program in BASIC for locating elliptically shaped resource targets by ground surveys and drilling programs on square grids; Jour.Math.Geol. (in press).

    Google Scholar 

  32. WILDE, D.J., 1964, Optimum seeking methods; Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Wignall, T.K., De Geoffroy, J. (1987). Probabilistic Models for the Optimal Detection of Ore Deposits by Airborne and Ground Exploration Programs. In: Statistical Models for Optimizing Mineral Exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1861-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1861-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9038-4

  • Online ISBN: 978-1-4613-1861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics